Spherical Preemptive Autonomous Rover (S.P.A.R.)

By: Onorio Franco Jr.
Trinidad State Junior College
Project Goals

- Personal

- Robotics Challenge
 Mass Divisions:
 - < 1.5 Kg
 - < 4.0 Kg
 Cost: < $500
 No flying entries
 Reasonably small in size
Advanced Sensor

- Laser Range Finder (LRF)
 - Pros-
 - Distance [6in-8ft]
 - Cons-
 - Slow response
 - Large amounts of interference
Initial Design

- Spherical Design
- Improvements
 - Two-wheeled Drive system
 - Reduced weight
 - Faster responses
Designs 1-3

#1
- Balancing wheels
- Increase surface area
- Allowed forward motion

#2
- Balancing Sled
- Use the Motors
- Used to Slide over top

#3
- 360 degrees of motion
- Important directions
Designs 4-6

4
- 360 degrees
- Wheel with less resistance
- Delrin Plastic

5
- Trailer hitch swivel
- Large wheel base
- Changed CG

6
- Combined Sled and wheel
- Changed rotation axis
- Increased surface area
- Changed CG
Final Product
Robotics Challenge
Challenge Results

- EEPROM failure
- Magnetic Interference
- Size influence
- Mechanical achievements
- Sensor response
Personal Results

- Main lessons
 - Test….Test…Test..then Re-Test
 - Brainstorming Importance
 - Interference importance
 - Reliable hardware
 - Just Enjoy

- Wrap-Up
 - Thoughts
 - Future
Questions?