RocketSat IX
CRYME

Kamron Medina, Becca Lidvall,
Peter Merrick, Jon Quinn,
Jannine Vela
Nomenclature

• CRYME: CRYstallization in Microgravity Experiment
• SAT: Sodium Acetate Trihydrate
• SCN: Succinonitrile
RockSat-X Program

- National program in affiliation with NASA enabling universities to launch a payload on an Improved Terrier-Malemute sounding rocket
- Launched from Wallops Flight Facility
- 5 payload bay representing 7 university teams
 - Each payload is provided power and telemetry
 - 30 ± 1 pound weight requirement
 - 11 inch diameter by 11 inch height cylindrical space
 - Approximately 2 minutes in microgravity
Mission Statement

The CRYME payload was built to investigate the validity of microgravity crystalline experiments on sounding rockets for the Air Force Research Laboratory. A supersaturated solution of SAT was used to analyze differences in reaction speed and uniformity between results obtained under Earth and microgravity conditions.
Theory and Background

• Crystallization important in medical and semiconductor industries
• Crystals grow larger and more pure in microgravity
• Lower defect rate
• Could mean more potent and effective drugs for the medical industry
Theory and Background – DECLIC

• Experimentation with SCN on the International Space Station (ISS)
• Cooled over four hours & much more expensive than rocket flight
Concept of Operations

- Launch from Wallops Flight Testing Facility
 - Begin Microgravity and despin
 - Apogee
 - $t \approx 3.3$ min
 - Altitude: ≈ 140 km
 - Initialize Reaction SAT
 - Power Down
 - $t \approx 5.6$ min
 - Altitude: 44.8 km
 - Chute Deploys
 - $t \approx 7.9$ min
 - Splash Down
 - $t = 0$ min
 - Altitude: 78 km
Expected Results

• Capture and downlink low-res images of the SAT reaction
 – Use shutter function to capture and store several time-stamp images of the reaction
 – Provides data for comparison on ground

• Save high resolution video of the SAT reaction

• Compare the videos of SAT reactions for rate of spread and for uniformity
 – Reaction will travel faster and more uniformly across the solution in microgravity
Design
Sodium Acetate Trihydrate

• Test the effects of microgravity on the spread of crystallization
 – Initiating a homogenous reaction of a supersaturated solution of SAT.
 – Peltier device to heat and cool
• Melting point: 58.4°C
• SAT to water ratio of 4:1
• Approximately 36ml volume
Supersaturated Solution

- Heat water to slightly less than 100°C
- Dissolve SAT in 4:1 ratio
- Allow to cool while covered to protect from contamination
- Crystallization nucleates at point where seed crystal enters solution and spreads until all is crystallized
- Will not crystallize when temperature greater than 50°C
SAT – Reaction Characteristics

• “Fingers” across solution
SAT – Reaction Characteristics

Ideal Temperature: 37°C
SAT – Triggering Crystallization

• Research articles described seed crystals as the only effective triggering method
• Tiny crystals tucked in cracked of materials
 – Reusable hand warmers
 – When flexed, crystals released are enough to initiate
 – Can cause problems with porous materials
• Triggering with other methods was unsuccessful
SAT – Triggering Final Design

• Linear actuators to introduce seed crystal into solution when motor is driven
• Based off syringe design with a plunger

Seed crystals go here

Linear actuator

Crystallization front
SAT – Triggering Final Design

• Two larger wells with linear actuators
 – Redundancy for reaction

• Two small wells completely sealed
 – Control experiment to see if rocket vibration could cause crystallization
Containment of Chemicals

- Compressed by two neoprene rubber gaskets, a polycarbonate sheet and an aluminum top
- Large containers used to have a large crystallization area
- Allowed for the insertion of seed crystals with actuating mechanism

- Compressed by two neoprene rubber gaskets, a polycarbonate sheet and an aluminum top
- Was testing the validity of spontaneous crystallization due to rocket’s vibration during flight
Launch

• Both shells held dry seal throughout flight and recovery
• All of the telemetry data was streamed appropriately
 – 90 pictures were taken throughout (31 after launch)
 – Raw accelerometer data
• No error flags were found on parallel lines
Results

• All wells remained liquid throughout flight
 – Low-resolution images

• Critical mission failure was caused by faulty motor controller
 – Voltage leak drained battery over 6 days
Benefits to the Scientific Community

• Proof that SAT can only be crystallized by a seed crystal
 – Forces of launch did not cause wells to crystallize
 – Crystallization occurs immediately upon introducing seed crystals into solution
Continuing Work

• Supercooling
 – During chemistry research, the team was able to crystallize SAT through supercooling
 – Crystallized around -2°C

• Potential projects on the ISS:
 – Allows for more time to conduct the experiment
 – Allows for greater flexibility in choosing chemicals.
 – Similar to the NASA DECLIC mission
Lesson Learned

• Communication is key
• Test everything!
• Get flight hardware
• Use your resources – find experts
• Make good use of time – there is less than you think
Conclusion

• The vibrations from a rocket launch will not trigger a crystallization reaction of SAT.
• Failure to meet objectives:
 – H-Bridge power leak caused a failure to initiate actuators. Seed crystals were not introduced into the wells. No reaction occurred.
• Our payload was structurally sound.
 – Seals held through re-entry.
 – Low resolution camera and light bar functioned as planned.
• Restoration and Re-Fly
Acknowledgements & Thank you’s

• Chris Koehler – Colorado Space Grant Consortium
• Jeff Ganley – United States Air Force
• Bioserve
 – Dr. Louis Stodieck
 – Mark Rupert
• Ray Wolff – Hot Snapz
 • Martin Glicksman – Florida Institute of Technology
• Bernard Billia – NASA
• Ben & Professor Eisenberger – Craft Technologies
• Oscar Puntes – University of Puerto Rico, SEM Pictures
• The population of Space Grant for random help with everything!
References

