Mercury O.A.K SAT

Tia Phoebus, Michael Prozeralik, Matthew Romero

Function
- Create a multisensory payload to transmit live data to a ground station for immediate analysis
- Collected atmospheric and orientation data of the payload
- Designed to be customizable depending on the user

Transmission System
- Used RFD900+ modems to relay collected data
 - Operating frequency of 900-928MHz
 - Outdoor LOS range of 40km
 - Data rate speed up to 250kbps
 - Weight of 14.5g
 - Operating temperature of -40 to 85 Celsius
- Multidirectional wheel antenna used inside payload
 - Frequency range within COSGC requirements
 - Easily installed into payload
- High gain Yagi antenna used for ground station
 - Frequency range was compatible with the payload
- Both are easily installed onto RFD900+ modems

Launch Data
- 45% of data collected was received by ground station
- Average disconnect was 0.6 seconds
- Max altitude reading was 2.2% below EOSS's reading
- Rotational speed at particular point shown 33 deg/s
- Payload was under +/- 30 deg pitch and roll orientations

Orientation Testing
- Understand how transmission is affected by the antenna orientation
 - Found range angles that transmission succeeded
 - Transmitted at various locations at Horsetooth reservoir
 - Each location has a direct Line of Sight
 - Able to regain connection after transmission was lost

Future Steps
- Install other atmospheric sensors
- Install on other aircraft systems
- Increase sampling rate of sensors for more accurate orientation measurements
- Create better method for holding/orienting the ground station antenna

COLORADO SPACE GRANT CONSORTIUM

Colorado State University