Damaging UV Light; the Effect of Containers on the Photo-degradation of Naproxen

Community College of Aurora
By: Garrett Zimmerman, Erid Pineda, Jeremy Cordova
Potential Focus

- Cheap alternatives to protect photosensitive products
 - Shelf life
 - How careful do we need to be?
 - How much exposure is too much exposure
- Future space travel
 - Mars
 - Moon
 - Long space flights
UV exposure in the stratosphere

- The Stratosphere is a mars like environment
- Exposure to UVB/UVA rays
- Exposure to cosmic rays
Mission Overview

- Our mission objective is to find the range in which our Naproxen solution will photodegrade, by using different colored 3-D printer containers.
- We expect to prove that there are cheap methods to house medicine that will protect them from the effects of UV light.
- When photosensitive products are exposed to UV light they will photodegrade into new substances. They could even cause a reaction that makes the product toxic. We shall examine naproxen, which is known to photodegrade.
Why Naproxen?

- Anti-inflammatory drug
 - Useful drug
- Photosensitive drug
 - Likely produce a product formation
- From a solid form to a liquid form
 - Lower activation energy

Naproxen has been observed to absorb UV light wavelengths (210-310nm)
What we measured

- UV Irradiance (In mW/cm²)
 - Using six ML8511 UV sensors

- External/Internal
 Temperature
 - Using two TMP36 sensors
How we did it

- 5 3-D printer colored containers
- 5 encapsulated Naproxen samples
- 6 UV sensors
- 1 Heater circuit
Design - Containers

- Each of the containers were 3D printed
 - Each a different colored container
 - Made from T-Glasse (PETT), a semi-transparent printer filament.

- Each container was designed to hold a Naproxen sample an UV sensor
 - Completely cover the UV sensor and sample
Why T-Glase?

- Clear
- High strength
- Color options
Design - Top
Mass Spectroscopy

- Used to determine the chemical composition of our samples
What Photo-degradation of Naproxen looks like

Area Percent Report

Data File: C:\HPCHEM\1\DATA\EVADEMO.D
Acq On: 22 Apr 2016 15:32
Sample:
Misc:
MS Integration Params: events.e
Method: C:\HPCHEM\1\METHODS\CCA.M (Chemstation Integrator)
Title:
Signal: TIC

<table>
<thead>
<tr>
<th>peak</th>
<th>R.T. first</th>
<th>max</th>
<th>last</th>
<th>PK</th>
<th>peak</th>
<th>corr.</th>
<th>corr.</th>
<th>% of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>min</td>
<td>scan</td>
<td>scan</td>
<td>scan</td>
<td>scan</td>
<td>TY</td>
<td>height</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>8.393</td>
<td>409</td>
<td>514</td>
<td>530</td>
<td>BV</td>
<td>1654197</td>
<td>113882740</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>8.598</td>
<td>530</td>
<td>532</td>
<td>534</td>
<td>VV</td>
<td>245722</td>
<td>6818011</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>9.544</td>
<td>534</td>
<td>615</td>
<td>617</td>
<td>VV</td>
<td>16950194</td>
<td>3509645244</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>9.647</td>
<td>617</td>
<td>624</td>
<td>758</td>
<td>VB</td>
<td>517558111</td>
<td>2181476077</td>
</tr>
</tbody>
</table>

Sum of corrected areas: 5811822872

EVADEMO.D CCA.M Fri Apr 22 16:00:00 2016
Results - Mass Spectroscopy of Samples
Results - Temperature

Red - Internal
Black - External
Results - UV Sensor Data

UV Sensor Converted Data

Irradiance (mW/cm^2)

Time (minutes)
UV Sensor Converted Data

Irradiance (mW/cm^2)

Time (minutes)
Results - Converted UV Sensor Data

UV Sensor Converted Data

Irradiance (mW/cm²)

Time (minutes)
So how effective were the boxes?
Conclusion

- Different Colors have different reflective abilities of UV light

- Not enough UV exposure for photo-degradation
 - Balloon did not fly high enough or long enough