Analyzing Interactions Between Atmospheric Waves

Virginia Nystrom

RESEARCH OBJECTIVES

1. Understand the mechanics behind solar thermal tides
2. Explore the nature of waves in a model of the atmosphere
3. Determine the extent of non-linear wave-wave interactions present in the model
4. Demonstrate the complexity that is introduced by non-linear wave interactions

ORIGINS OF ATMOSPHERIC WAVES

- Terrestrial weather affects weather in the upper atmosphere
- Thermal tides excited in the lower atmosphere propagate to higher altitudes
- Linear and non-linear interactions produce secondary waves
- Planetary waves influence space weather, which can affect:
 - Communications, guidance, and navigation systems
 - Satellite orbits
 - Re-entry of spacecraft and orbital debris
- Waves on other planets can be modeled similarly

MATHEMATICAL METHODS

- Least Squares Fitting
- Spectral Analysis

MODELING ATMOSPHERIC WAVES

Atmospheric waves are periodic, and are thus modeled with Sine and Cosine equations.

- Solar thermal tides are referenced by their period, direction of propagation, and zonal wave number
 - Ex. DW1: 24-hour period, propagates to the west, zonal wave number of 1
- The below equation represents an atmospheric wave:
 \[A \cdot \cos(\omega t + \delta_\Omega \lambda - \phi) \]
- Two-dimensional least squares fitting generates the coefficients
 - Temperature data is fit to the above equation

RESULTS

Interactions between primary waves and secondary waves are called sidebands, and are identified using 2-D spectra of wave amplitude.

Sidebands are identified by the following formula:

\[\cos(\delta t \tau + m\lambda) \cdot \cos(\Omega t + \lambda) = \cos((\Omega + \delta\Omega) t + (s + m)\lambda) + \cos((\Omega - \delta\Omega) t + (s - m)\lambda) \]

Modulation of a Primary Wave

First, prominent primary waves are identified:

Then, sideband calculations are performed to determine which sidebands are present. The inter-dependence of the three waves below demonstrates that the wave interact non-linearly.

DATA

- Temperature and wind data is taken from the Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model
 - Developed by High-Altitude Observatory at the National Center for Atmospheric Research
 - MERRA (Modern-Era Retrospective Analysis for Research and Applications)
- 3-D time-dependent model of the Earth’s upper atmosphere
- Analyzing data from April 2009

CONCLUSIONS

- The nonlinear interactions between primary waves add complexity to the atmospheric profile
- The primary waves to continue studying for April 2009 are DW1, DW2, DE3, and UFKW
- Further research is necessary to fully understand the impact of non-linear wave-wave interactions

FURTHER RESEARCH

- Complete identification of wave-wave interactions
 - Determine the latitude vs. height structures of all primary waves and sidebands in the model
 - Classify all waves as primary or secondary
- Evaluate the spatial-temporal complexity produced by the non-linear wave-wave interactions

ACKNOWLEDGEMENTS

Special thanks to Dr. Jeffrey Forbes and Dr. Federico Gasperini for their guidance and insight during this research project. Additional thanks to the CU Boulder College of Engineering Discovery Learning Apprenticeship program.