Gateway To Space

ASEN 1400 / ASTR 2500

Class #19

Colorado Space Grant Consortium
Today:

- Announcements

- Guest Lecture - ADCS

- Launch is in 18 days
Announcements:

- Still working getting next round of grades posted

- DD Rev A/B are graded
 - Comments given to those teams I met with
 - Combining Crawford’s comments with mine
 - New grade sheet will have grades
 - Overall most teams did well
Next Class...

In-Class Team Time

Bring all hardware and be prepared for in-class inspections

Ready For Flight Cards

Colorado Space Grant Consortium
Tuesday 11/04...

In-Class Mission Simulations

Payloads turned on beginning of class and off at end

Spider

Colorado Space Grant Consortium
Questions?

Colorado Space Grant Consortium
Spacecraft ADCS

ASEN 1400 / ASTR 2500

Brady Young
Lockheed Martin

Colorado Space Grant Consortium
Spacecraft Attitude Determination and Control

Brady Young
brady.young@lmco.com
November 28th, 2014
What is ADCS?
[Attitude Determination and Control Subsystem]
“It’s all about orientation”

• “Attitude” is the relative orientation of one frame to another
 – With spacecraft, it always starts with a spacecraft-body-fixed frame relative to an inertially-fixed frame
 – Anything “pointing” typically falls to the ADCS team to control

• Acronym varies: ACDS, ACS, ADC,…

“It’s all about orientation”
Why ADCS is the Best Spacecraft Subsystem

• Interconnected with all other subsystems
 – Must point payloads at targets, COM antennas at ground stations, solar arrays at the sun…

• Interesting work in all mission phases
 – Mission design, S/C design, I&T, commissioning, operations, mission extensions

• Nice balance of academic and production-oriented activities
 – Analysis deeply rooted in theory, but hardware still has to fly!

• Interpretive dance in the workplace
Part 1: Attitude Determination

“Where Am I?”
Describing Pointing

- Usually comes down to a unit vector in a common frame
 - Example: “The camera’s boresight is \([x, y, z] \) in the ECI frame”
- Assign convenient coordinate frames to instruments of interest
- Then it’s just linear algebra to transform vectors from one frame to the next

\[
\begin{bmatrix}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}_N
= \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}_B
\]

The 3x3 matrix \([T]\) is a Direction Cosine matrix, a common way to represent attitude.

\(X_B = [x, y, z]_N\)
Describing an Attitude

• Use your right hand!
• There are many ways to represent an attitude:
 – Euler angles (roll, pitch, yaw)
 – Direction cosine matrices (“DCMs”)
 – Quaternions
 – Modified Rodriguez Parameters & others
• Attitude is always relative! Always frame-A-to-frame-B.
• Very common for attitudes to be nested:
 A-to-C = A-to-B, then B-to-C
The Human Star Tracker Game

Comparing the landmarks seen by your sensors against their known locations

- One vector isn’t enough information
- Two vectors is too much information
- “Triad” is the most simplistic reconciliation: declare one measurement to be true, then “swivel” about it to make the other measurement as close as you can
AD In Practice

• We almost always collect more data than we need

• **Estimation**: getting a small amount of quality information out of a large quantity of noisy measurements

• Least Squares Fitting is used everywhere
 – Ex: Q-method, Kalman Filter
AD Hardware: Sensors

- **Earth Sensors / Horizon Sensors**
 - Optical instruments that scan for the CO$_2$ in Earth’s atmosphere

- **Sun Sensors**
 - When illuminated, report vector to sun

- **Magnetometer**
 - Detects Earth’s magnetic field as a 3D vector

- **Star Trackers / Star Cameras**
 - Takes pictures of the sky and maps stars against a catalog

- **Angular Rate Sensors**
 - Directly measure rate & direction of rotation vs. inertial space
 - Iron gyros, Ring Laser Gyros, Fiber Optic Gyros
 - “Relative” position measurements, suffer from drift over time
Part 2: Attitude Control

“Get a Move On!”
Common Attitude Targets

- Inertial
- Orbit-fixed
- Spin about an axis (old school)
- Nadir Pointing
- Earth-target tracking
Most Generic Block Diagram

Automotive Example

Target

"I want to go 50 mph."

Error

"Need to go 5 mph faster"

Controller

The flight computer and control law

Command

"Open throttle 10 degrees!"

Plant

"State"

"Now going 46 mph"

Sensor

"The speedometer reads 45 mph"
Control Laws

The brains of the operation

- **PID control is by far the most common**
 - **Proportional:** based on displacement from target (like a spring)
 - Good for responding quickly to disturbances
 - **Integrator:** based on *accumulated* displacement from target
 - Good for removing constant “DC” biases
 - **Derivative:** based on rate of change (like a damper)
 - Good for stability
 - Frequency domain analysis techniques
 - Bode plots, Nichols plots, …

- **Multiple control loops are common**
 - Coarse vs. fine pointing systems
 - Pointing vs. momentum management
AC Hardware: Actuators

- Thrusters
- Electromagnetic Torque Rods
- Reaction wheels
- Control-Moment Gyros
- Passive devices: gravity gradient boom, viscous dampers, aerobrakes
Speaking the Language

Open Loop Control: sending commands without real-time visibility into their effect

Closed Loop Control: commanding that adjusts in real-time based on its measured effectiveness

Gains – coefficients that dictate the responsiveness of the system

Phase Margin/Gain Margin: measures of stability

Bandwidth: what range of frequencies your system responds to

Propagation: predicting the state of the system sometime in the future based only on the current state of the system
“GNC”

• **Guidance**
 – “Figuring out where you are”
 – The job of a sensor
 – Example: “My speedometer says I’m going 25 mph, but I’d really like to be doing 50”

• **Navigation**
 – “Your strategy for getting where you want to go”
 – The job of computers & algorithms
 – Example: “I’ll cross into the left lane and pass this dump truck”

• **Control**
 – “Getting there”
 – The job of actuators
 – Example: mash pedal to the floor, turn wheel to the left, …
Orbits

Position and Velocity
Orbit Types

• Low-Earth Orbit (LEO)
 – Easy to get to, see lots of parts of the Earth
 – Ex: Int’l Space Station, GEOEYE

• Geosynchronous Orbit (GEO)
 – See the same spot on the ground 24/7
 – Ex: Satellite TV

• Others:
 – MEO, HEO

• Space debris pic here
Defining Your Orbit

- You will always need 7 numbers to uniquely describe an orbit
- One of them is always time... the “epoch”
- Six orbital elements, or Position and Velocity as 3-element vectors
Maneuvers

• Hohman Transfer
 – Most fuel efficient way to increase SMA (raise orbit)
 – Burn in velocity direction at apogee

• Higher orbits do fewer “revs” per day
 – NOT intuitive for formation flying
Orbits: Speaking the Language

• J2 – The equitorial “bulge” of the Earth
• Spherical Harmonics – mathematical parameters to describe the shape of the Earth
• Geoid – the gravitational shape of the Earth. The shape of the Earth if it were uniformly dense.
• Precession – The slow rotation of the orbit plane about the Earth’s spin axis
 – Caused by the J2. Rate of precession varies with altitude, inclination
• Vernal Equinox – line formed by intersection of Earth’s equator and the plane of Earth’s orbit around the sun
Links

- http://www.youtube.com/watch?v=dmnmumuTv4pGE