Gateway To Space

ASEN 1400

Class #x2

Colorado Space Grant Consortium
Today:

- Extra credit for being here tonight
- Goal to be done by 8 PM
- Need to get through SD card write and Excel
Part 3 – Arduino Road Trip

A. Humidity Sensor
B. Temperature Sensor
C. Pressure Sensor
D. Accelerometers
E. External Temp Sensor
External Temperature Sensor:
Balloon Shield Build Part 6:

- Add Orange LED to D4
- Red wire to + and Black wire to -
Balloon Shield Build Part 6:

- Add Blue LED to D3
- Red wire to + and Black wire to -
Balloon Shield Build Part 6:

- Add Temp2 to Temp2
- Note wire colors
Balloon Shield Build Part 6:

- Go to the website and download code…
Balloon Shield Build Part 6:

- Open Temp1 Sketch; save as Temp2

```cpp
// Definitions
int temp2;
float temp2Volt;
float temp2C;
float temp2F;

void setup()
{
  Serial.begin(9600);

  // setup the LED Visual Display
  pinMode(3, OUTPUT);  //Blue LED
  pinMode(4, OUTPUT);  //Orange LED
  pinMode(5, OUTPUT);  //Green LED
  pinMode(6, OUTPUT);  //Purple LED
  pinMode(7, OUTPUT);  //Red LED
  pinMode(9, OUTPUT);  //Yellow LED

  temp2 = analogRead(A1);
  temp2Volt = temp2* (5.0/1023);
  temp2C = (temp2Volt - 0.5)/(0.01);
  temp2F = (temp2C* (9.0/5.0) + 32);
  Serial.print(temp2);
  Serial.print("\t Temp2Volt ");
  Serial.print(temp2Volt);
  Serial.print("\t Temp2C ");
  Serial.print(temp2C);
  Serial.print("\t Temp2F ");
  Serial.println(temp2F);
}

void loop()
{
  // put your main code here, to run repeatedly
}
```
Balloon Shield Build Part 6:

- Build and upload your sketch
- Temp2 will stick outside your BalloonSat
- LED 3 and 4, will also stick outside your BalloonSat
Balloon Shield Build Part 6:

- Build and upload your sketch

- Temp2 will stick outside your BalloonSat

- LED 3 and 4, will also stick outside your BalloonSat
Part 3 – Arduino Road Trip

A. Humidity Sensor
B. Temperature Sensor
C. Pressure Sensor
D. Accelerometers
E. External Temp Sensor
Great Job!

My fist....
bump it
Full Sensor Code Testing:

- Now let’s integrate all the code and sensors together and test

- We will review code but you will use a **pre-coded** sketch

- Everything should look familiar
Full Sensor Code Testing:

// Definitions
// Temperature Sensor #1
 int temp1;
 float temp1Volt;
 float temp1C;
 float temp1F;

// Temperature Sensor #2
 int temp2;
 float temp2Volt;
 float temp2C;
 float temp2F;

// Humidity Sensor
 int humidity;
 float humidityVolt;
 float RH;

// Pressure Sensor
 int pressure;
 float pressureVolt;
 float psi;

// Accelerometer X
 int accelX;
 float accelXVolt;
 float accelXG;

// Accelerometer Z
 int accelZ;
 float accelZVolt;
 float accelZG;
Full Sensor Code Testing:

```c
void setup() {
    // put your setup code here, to run once:

    Serial.begin(9600);

    // setup the LED Visual Display
    pinMode(3, OUTPUT);   // SD Card writing
    pinMode(4, OUTPUT);   // Arduino on
    pinMode(5, OUTPUT);   // Sensors/sketch running
    pinMode(6, OUTPUT);   // Sensors/sketch running
    pinMode(7, OUTPUT);   // Sensors/sketch running
    pinMode(9, OUTPUT);   // Sensors/sketch running
}
```
Full Sensor Code Testing:

```c
void loop() {
    // put your main code here, to run repeatedly:
    // Turn script running leds OFF at begining of loop
    digitalWrite(3, LOW);
    digitalWrite(4, LOW);
    digitalWrite(5, LOW);
    digitalWrite(6, LOW);
    digitalWrite(7, LOW);
    digitalWrite(9, LOW);

    delay(500);

    // Turn script running leds ON at begining of loop
    digitalWrite(3, HIGH);
    digitalWrite(4, HIGH);
    digitalWrite(5, HIGH);
    digitalWrite(6, HIGH);
    digitalWrite(7, HIGH);
    digitalWrite(9, HIGH);
}```
Full Sensor Code Testing:

temp1 = analogRead(A0);
temp1Volt = temp1*(5.0/1023);
temp1C = (temp1Volt - 0.5)/(0.01);
temp1F = (temp1C*(9.0/5.0) + 32);
Serial.print("Temp1");
Serial.print(temp1F, 2);

temp2 = analogRead(A1);
temp2Volt = temp2*(5.0/1023);
temp2C = (temp2Volt - 0.5)/(0.01);
temp2F = (temp2C*(9.0/5.0) + 32);
Serial.print("\tTemp2");
Serial.print(temp2F, 2);
Full Sensor Code Testing:

```cpp
humidity = analogRead(A2);
humidityVolt = humidity*(5.0/1023);
RH = (((humidityVolt/5.0)-0.16)/0.0062);
Serial.print("\t RH ");
Serial.print(RH, 2);

pressure = analogRead(A3);
presureVolt = pressure*(5.0/1023);
psi = (pressureVolt-0.5)*(15.0/4.0);
Serial.print("\t PSI ");
Serial.print(psi, 2);
```
Full Sensor Code Testing:

```
accelX = analogRead(A4);
accelXVolt = accelX*(5.0/1023);
accelXG = (accelXVolt - (3.3/2))/(0.330);
Serial.print("\t XG ");
Serial.print((accelXG,3));

accelZ = analogRead(A5);
accelZVolt = accelZ*(5.0/1023);
accelZG = (accelZVolt - (3.3/2))/(0.330);
Serial.print("\t ZG ");
Serial.print((accelZG,3));

Serial.println();
```
Full Sensor Code Testing:

- Download code and run and verify it works....
### Full Sensor Code Testing:

- Should look like this

<table>
<thead>
<tr>
<th>Temp1</th>
<th>Temp2</th>
<th>RH</th>
<th>PSI</th>
<th>XG</th>
<th>ZG</th>
</tr>
</thead>
<tbody>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.98</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>45.14</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>45.14</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>70.45</td>
<td>72.21</td>
<td>44.51</td>
<td>12.07</td>
<td>0.021</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.67</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.51</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.67</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>69.57</td>
<td>71.33</td>
<td>44.35</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>70.45</td>
<td>72.21</td>
<td>44.83</td>
<td>12.07</td>
<td>0.021</td>
<td>1.132</td>
</tr>
<tr>
<td>70.45</td>
<td>71.33</td>
<td>44.83</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.51</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>70.45</td>
<td>72.21</td>
<td>44.67</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>45.14</td>
<td>12.07</td>
<td>0.021</td>
<td>1.132</td>
</tr>
</tbody>
</table>
Part 4 – Arduino Race Track

A. SHIELD Integration
B. SD Card Code Integration
C. Data Retrieval
**MicroSD Card Shield:**

- **LEDs**
- **Arduino Uno**
- **Micro SD Card Shield**
- **PC/Mac**
- **Monitor**
- **Temp 1**
- **Temp 2**
- **Humidity**
- **Pressure**
- **AccelX**
- **AccelZ**
- **Micro SD Card Shield**
Part 4 – Arduino Race Track

A. SHIELD Integration
B. SD Card Code Integration
C. Data Retrieval
**MicroSD Card Shield:**

- **Arduino Uno**
- **LEDs**
- **PC/Mac**
- **Monitor**
- **MicroSD Card Shield**
  - **AccelZ**
  - **AccelX**
  - **Pressure**
  - **Humidity**
  - **Temp 2**
  - **Temp 1**
Micro SD Card Shield:

- Insert microSD card
Micro SD Card Shield:

- Insert microSD card
Micro SD Card Shield:

- Align pins to Arduino headers and connect
Micro SD Card Shield:

- Connect Balloon Shield to stack
Micro SD Card Shield:

- Reconnect USB and rerun same code

<table>
<thead>
<tr>
<th>Temp1</th>
<th>Temp2</th>
<th>RH</th>
<th>PSI</th>
<th>XG</th>
<th>ZG</th>
</tr>
</thead>
<tbody>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.98</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>45.14</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>45.14</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>70.45</td>
<td>72.21</td>
<td>44.51</td>
<td>12.07</td>
<td>0.021</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.67</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.51</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.67</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>69.57</td>
<td>71.33</td>
<td>44.35</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>70.45</td>
<td>72.21</td>
<td>44.83</td>
<td>12.07</td>
<td>0.021</td>
<td>1.132</td>
</tr>
<tr>
<td>70.45</td>
<td>71.33</td>
<td>44.83</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>70.45</td>
<td>72.21</td>
<td>44.83</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.83</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.83</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.51</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.67</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>70.45</td>
<td>72.21</td>
<td>44.51</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.67</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>45.14</td>
<td>12.09</td>
<td>0.021</td>
<td>1.132</td>
</tr>
</tbody>
</table>
Part 4 – Arduino Race Track

A. SHIELD Integration
B. SD Card Code Integration
C. Data Retrieval
SD Card Code:

- Now let’s explore the code needed to record this data to an SD Card

“This is your last chance ... After this, there is no turning back. You take the blue pill - the story ends, you wake up in your bed, and believe whatever you want to believe. You take the red pill, ... you stay in Wonderland, and I show you, how deep the rabbit-hole goes.”

~ Morpheus’ Warning To Neo (From The Film; “The Matrix”) ~
**SD Card Code:**

- SD card writing uses **libraries** built into the Arduino software

- Code gets a little more complicated at this point but relatively easy compared to other languages that write to SD cards
**SD Card Code:**

- `#include` adds libraries

- **LOG_INTERVAL** is our sample rate

- **uint32_t** is our time stamp timer

- **logFileName** is our sd card file name

- **ledState** = is our LED blink variable

- **chipSelect** required by sd

```c
//Include Files for SD card
#include <SD.h>
#include <SPI.h>

// Controls for the data logging system
const int LOG_INTERVAL = 500;

// Time keeper
uint32_t timeStamp = 0; // Time stamp

const int chipSelect = 8; // T

// Variable for file name
char logFileName[16];

// Use this LED for your writing in
int ledState = 0;
```
SD Card Code:

- Define character variables for data storage technique

```c
// Definitions
// Temperature Sensor #1
int temp1;
float temp1Volt;
float temp1C;
float temp1F;
char temp1FString[7];

// Temperature Sensor #2
int temp2;
float temp2Volt;
float temp2C;
float temp2F;
char temp2FString[7];

// Humidity Sensor
int humidity;
float humidityVolt;
float RH;
char RHString[7];
```
SD Card Code:

- Define character variables for data storage technique

```c
// Pressure Sensor
int pressure;
float pressureVolt;
float psi;
char psiString[7];

// Accelerometer X
int accelX;
float accelXVolt;
float accelXG;
char accelXGString[7];

// Accelerometer Z
int accelZ;
float accelZVolt;
float accelZG;
char accelZGString[7];
```
**SD Card Code:**

- Define a string variable to store character data storage

```java
// This variable will hold the data from a read cycle
String dataString = "";
```
SD Card Code:

- Define a string variable to contain data headers

```java
String sensorNames = "Time Stamp (ms), Temp1 (F), Temp2 (F), RH (%), Pres (psi), XG (°), ZG (°)");
```
SD Card Code:

- New Void Setup code...

```c
void setup() {
 // put your setup code here, to run once:

 Serial.begin(9600);

 // setup the LED Visual Display
 pinMode(3, OUTPUT); //SD Card writing
 pinMode(4, OUTPUT); //Arduino on
 pinMode(5, OUTPUT); //Sensors/sketch running
 pinMode(6, OUTPUT); //Sensors/sketch running
 pinMode(7, OUTPUT); //Sensors/sketch running
 pinMode(9, OUTPUT); //Sensors/sketch running
```
**SD Card Code:**

- New Void Setup code...

```c
// turn on Arduino LED

digitalWrite(4, HIGH); // Leave on while power is on

// SD Card setup
// make sure that the default chip select pin is set to output,
pinMode(10, OUTPUT); // To make the SPI (microSD card) interface
pinMode(chipSelect, OUTPUT); // Set the Chip Select pin

// This function will set up the SD card so we can write to it.
// Also the header of the log file will be written to the file.
SDCardInit();
```
New Void Loop:

```c
void loop() {
 // put your main code here, to run repeatedly:

 // Turn script running leds OFF at begining of loop
 digitalWrite(5, LOW);
 digitalWrite(6, LOW);
 digitalWrite(7, LOW);
 digitalWrite(9, LOW);

 // Delay your time interval
 delay(LOG_INTERVAL);

 // Turn script running leds ON at begining of loop
 digitalWrite(5, HIGH);
 digitalWrite(6, HIGH);
 digitalWrite(7, HIGH);
 digitalWrite(9, HIGH);
}
```
New Void Loop:

- Clear the `dataString` at beginning of loop
- Record the time stamp
- Add to `dataString`

```java
// Clear out dataString to start a new record.
dataString = "";

// Log the time
timeStamp = millis();
dataString = String(timeStamp);
Serial.print(timeStamp);
```
**SD Card Code:**

- Record the time and print it
- Convert sensor value to character and store in string

```c
// Log the time

long timeStamp = millis();
String dataString = String(timeStamp);
Serial.print(timeStamp);

int temp1 = analogRead(A0);
temp1Volt = temp1*(5.0/1023);
temp1C = (temp1Volt - 0.5)/(0.01);
temp1F = (temp1C*(9.0/5.0) + 32);
Serial.print('(','
Serial.print(temp1F, 2);
Serial.print('),
Serial.print(dataString + "," + temp1FString);
```
**SD Card Code:**

- Think of `dataString` as a sentence

- Eventually we will write our sentence to the SD card

- Think of the **words** of the sentence are your sensors values converted from numbers to characters to strings

- **Word** = `temp1FString`
**SD Card Code:**

- Full Example…

> temp1F = 82.1

Convert to string - ` dtostrf ` does this

> temp1fString = “--82.1-”

Add to the sentence

> dataString = dataString + “,” + temp1FString;
**SD Card Code:**

- Convert sensor value to character and store in string

```cpp
temp1 = analogRead(A0);
temp1Volt = temp1*(5.0/1023);
temp1C = (temp1Volt - 0.5)/(0.01);
temp1F = (temp1C*(9.0/5.0) + 32);
Serial.print(',', ');
Serial.print(temp1F, 2);
dtostrf(temp1F, 6, 2, temp1FString); // Convert to float
dataString = dataString + "","" + temp1FString;
```
SD Card Code:

- Convert sensor value to character and store in string

```c
temp2 = analogRead(A1);
temp2Volt = temp2*(5.0/1023);
temp2C = (temp2Volt - 0.5)/(0.01);
temp2F = (temp2C*(9.0/5.0) + 32);
Serial.print(' , ');
Serial.print(temp2F, 2);
dtostrf(temp2F, 6, 2, temp2FString); // Convert
dataString = dataString + " , " + temp2FString;

humidity = analogRead(A2);
humidityVolt = humidity*(5.0/1023);
RH = (((humidityVolt/5.0)-0.16)/0.0062);
Serial.print(' , ');
Serial.print(RH, 2);
dtostrf(RH, 6, 2, RHString);
dataString = dataString + " , " + RHString;
```
**SD Card Code:**

- Convert sensor value to character and store in string
- Include a `Serial.println();` at the end for a new line

```cpp
pressure = analogRead(A3);
pressureVolt = pressure*(5.0/1023);
psi = (pressureVolt-0.5)*(15.0/4.0);
Serial.print(',');
Serial.print(psi, 2);
dtostrf(psi, 6, 2, psiString); //
dataString = dataString +""," + psiString; //

accelX = analogRead(A4);
accelXVolt = accelX*(5.0/1023);
accelXG = (accelXVolt - (3.3/2))/(0.330);
Serial.print(',');
Serial.print(accelXG, 3);
dtostrf(accelXG, 6, 2, accelXGString);
dataString = dataString +""," + accelXGString;

accelZ = analogRead(A5);
accelZVolt = accelZ*(5.0/1023);
accelZG = (accelZVolt - (3.3/2))/(0.330);
Serial.print(',');
Serial.print(accelZG, 3);
dtostrf(accelZG, 6, 2, accelZGString);
dataString = dataString +""," + accelZGString;
Serial.println();
```
**SD Card Code:**

- Call the write to sd magic
- If successful, blink led
- Loop

```c
// Write to the SD card and if a write
// The function writeDataToSD returns

if(writeDataToSD())
{
 // Change the State of the LED from
 ++ledState;
 // Handle the case where the LED state
 if (ledState > 1) {
 ledState = 0;
 }
}
// Update the activity LED to show a
// Change

digitalWrite(3, ledState);
```
SD Card Code:

- If you were to upload the code, would it work?
**SD Card Code:**

- If you were to upload the code, would it work?

- No because functions are not defined yet...

```c
pinMode(10, OUTPUT); //
pinMode(chipSelect, OUTPUT)

// This function will set
// Also the header of the
SDCardInit();

if(writeDataToSD())
{
 // Change the State of the LB
}
```
SD Card Code:

- Here is the code for SDCardInit():

```java
boolean SDCardInit()
{

 Serial.println("Initializing SD card...");

 // see if the card is present and can be initialized:
 if (!SD.begin(chipSelect))
 {
 Serial.println("Card failed, or not present");
 delay(100);
 // Can't do anything more. Try another time....
 return 0;
 }

 // The Card is present so find an unused file name

 Serial.println("searching for an unused file name... ");
 // Start with LOG0.CSV and count up until an unused file name is found

 for (long i=0; i < 1000; i++)
 {
 sprintf(logFileName, "LOG%d.CSV", i);
 if (!SD.exists(logFileName))
 {
 break;
 }
 }

}
SD Card Code:

- Here is the code for SDCardInit():

```
Serial.print("The Log filename is: ");
Serial.println(logFileName);

File dataFile = SD.open(logFileName, FILE_WRITE);

// Write the header including sensor names to the newly opened file
dataString = sensorNames;

if (dataFile)
{
    dataFile.println(dataString);
    dataFile.close();
    Serial.println("SD Card initialized and data written.");
    return(1); // Able to write to SD card
}
else
{
    Serial.println("SD card present but unable to write to file");
    sprintf(logFileName, "LOG0.CSV"); // Clear out the file
    return(0); // Unable to write to SD card
}
```

- But wait there is more!

- We still have the other function
SD Card Code:

- Here is the code for `writeDataToSD`;

- So where does all this code go?

- TABS…

```java
boolean writeDataToSD ()
{
    File dataFile = SD.open(logFileName, FILE_WRITE);

    // if the file is available, write to it:
    if (dataFile)
    {
        dataFile.println(dataString);
        dataFile.close();
        return(1);
    }

    // if the file isn't open, notify that there was an error
    else {
        Serial.println();
        Serial.print("error writing to file: ");
        Serial.println(logFileName);
        dataFile.close();
        delay(100);
        Serial.println("Re - Initializing SD card...");
        return(SDCardInit());
    }
}
```
SD Card Code:

- Creating tabs is a great to organize your code
SD Card Code:

- Creating one and press OK

- Make sure to type it exactly as the function
SD Card Code:

- Brand new real estate to type code!
SD Card Code:

- Create another one
SD Card Code:

- Every tab you create, creates a new *.ino file in the folder for your main tab or sketch you were working

- Must keep all *.ino files in the folder for the code to work properly

- Can only open the main *.ino file directly
SD Card Code:

- Now start typing
SD Card Code:

- No...Go to the website and download **SD+Sensor Code** (zip file)
SD Card Code:

- Unzip and use directly or open tabs, copy and paste content from one tab to your tab

- **Build and check for errors**

- Upload and watch LED blink

- Raise hand for help
Part 4 – Arduino Race Track

A. SHIELD Integration
B. SD Card Code Integration
C. Data Retrieval
Data Retrieval:

- Press the reset button on your microSD card Shield and record data as follows:

1. Breath on your humidity sensor twice
2. Suck on pressure sensor twice
3. Touch both temp sensors for 5 seconds each
4. Orient your accelerometer (Z up/down, X up/down) 10 seconds each direction
5. Breath on your humidity sensor twice
6. Suck on pressure sensor twice
7. Disconnect USB from Arduino
Data Retrieval:

Z Down

Z UP
Data Retrieval:

- Rotate your accelerometer like…

X Down

X Up
Data Retrieval:

- Remove microSD card from Uno and insert into SD card adapter
Data Retrieval:

- Remove microSD card from Uno and insert into SD card adapter
Data Retrieval:

- Insert SD card adapter into your laptop
Data Retrieval:

- Navigate to card and copy last LOG file to your desktop

- Open this file with Excel
Data Retrieval:

- Graph all data minus the time stamp

- Mac Users you must change tab name to remove “.”
Data Retrieval:

- Graph all data minus the time stamp
Data Retrieval:

- Do you see your data markers?
Data Retrieval:

- Re-plot just your accel data
Data Retrieval:

- How can you use this data?
Data Retrieval:

- So that’s the SD card stuff

- Questions?
SUCCESS

Because you too can own this face of pure accomplishment
Alternate Power:

- For balloon flight, need to power Arduino with 9V battery

- Do not connect USB and 9V ever
Alternate Power:

- Flip the switch ON
Alternate Power:

- You are now recording data until power is lost
Micro SD Card Shield:

- Disconnect USB cable and Balloon Shield