Practical Advice from a “Real” Engineer

Paul M. Anderson
Lockheed Martin Astronautics
(303) 971-4519
What are the Best Things About Your Job?

- Very Technically Challenging and Interesting Programs
 - Yes, this is Rocket Science

- Working with Incredibly Talented (and Under-Appreciated) Individuals

- Traveling (Some)

- Interfacing with the Public

- Launches!
What are the Worst Things About Your Job?

- **Failures**
 - Good Way to End Up on Leno & Letterman

- **Long Hours**
 - 50-60 Hours / Week During a Program is Typical

- **High Stress**
 - Lots of Technical Problems (without them we have no jobs)
 - Lots of Cost/Schedule Problems
 - High Visibility Programs (Company and General Public)

- **Lots of Traveling**
 - Most Business Trips are a Drag

- **Personnel Problems**
 - Very Few, but They’re Your Worst Nightmare
What do I Need to do to become a Successful Engineer?

- **Apply and Get Accepted to a Respected Engineering School**
 - Transfers from 2 Year Community Colleges are Now Widely Accepted and an Excellent, Cost-Effective Route
 - Does Not Have to be the #1 School in the World
 - But Should be Respected
 - Masters Degrees are Preferred, but can be Obtained Post-Employment
 - Good Tool to Help Avoid the Engineering and/or Management Glass Ceiling

- **Good Grades (within Reason)**
 - Extra-Curricular Activities are Also Strong Hiring Discriminators

- **Get Some Real-World Work Experience Before Graduating**
 - Taco Bell Doesn’t Count

- **Interview Well!**
 - If you can’t Write or Speak, Learn to do So
What do I Need to do to become a Successful Engineer?

• Get Along Well with People / Be a Good Team Player

• Be Diverse & Willing to do Multiple Things – Continually Broaden!

• Have a Positive Attitude

• Be Willing to Make Hard Decisions

• Be Thick Skinned but not Calloused
EPS Subsystem - What is it and What does it do?
EPS Subsystem - What is it and What does it do?

- **(4) Major Functions of the Electrical Power Subsystem**
 - **Produces / Collects Electrical Power**
 - **Nuclear**
 - Plutonium-Based Radioisotope Thermoelectric Generators (RTGs) – Planetary Spacecraft
 - Uranium-Based Fission Reactors – Very Few (SNAP; TOPAZ)
 - **Solar**
 - Silicon Solar Cells (Standard & High Efficiency) – Commercial & Low Cost Applications
 - Gallium Arsenide Solar Cells (1, 2, 3 Junction) – Commercial, LEO, GEO, Planetary Applications
 - Rigid, Flexible, Concentrating Arrays
 - **Stores Electrical Power**
 - **Batteries**
 - NiCd (Low-Cost; Short Mission Life Applications)
 - NiH₂ (Workhorse Technology for LEO, GEO, Planetary Applications)
 - AgZn (Limited Life Cycle Applications – Mars Pathfinder)
 - Lithium Ion (Upcoming Technology – Mars Exploration Rover; DOD Experimental Applications)
 - **Controls & Conditions Electrical Power**
 - Power Regulators
 - Battery Chargers
 - Power Converters
 - **Distributes Electrical Power**
 - Power Switches (Mechanical or Electrical)
 - Fuses / Electronic Circuit Breakers
How Much Power Does a Spacecraft Need?
How Much Power Does a Spacecraft Need?

- **Small (Light-Bulb Sized)**
 - Mars Climate Orbiter; Mars Odyssey: 300W
 - Mars Polar Lander; Mars Exploration Rover: 150W
 - Stardust; Genesis: 200W

- **Medium (Hair Dryer Sized)**
 - Mars Reconnaissance Orbiter (1kW)
 - Commercial & Military Communication Satellites (1kW - 15kW)
 - Weather Satellites (2kW - 5kW)
 - Classified Satellites (Can’t Say)

- **Large (House-Sized)**
 - Hubble Space Telescope (25kW)
 - NASA / International Space Station (50kW)
 - Project Prometheus / Jupiter Icy Moon Orbiter (JIMO) – In Work

- **Monster (City-Sized)**
 - Lunar & Martin Outposts (100kW - 1MW)
 - SDI Weapons Platforms (100MW+)
What Gets Powered on a Spacecraft?
What Gets Powered on a Spacecraft?

- Computer
- Power (Battery, Electronics)
- Attitude Control Equipment (Star Cameras, IMUs, Reaction Wheels)
- Telecommunication Equipment (RF Amplifiers)
- Thermal Control (Heaters)
- Propulsion Thruster Valves
- Payload (What the Spacecraft Actually Does)
What Does a Solar Powered EPS Look Like & How Does it Work?

Solar Array
- Lander Cruise
 - 30 Strings
 - 7.5 mil GaAs/Ge 1J
- Lander Landed
 - 31 Strings
 - 7.5 mil GaAs/Ge 1J
- Orbiter
 - 72 Strings
 - 7.5 mil GaAs/Ge 1J

Battery Assembly
- Single NiH2 Battery
- (11) 16 A-Hr CPVs
- “Extra” IPV Cell (L)
- Telemetry

Charge Control Unit (CCU)
- CCU Card “A”
- CCU Card “B”

Power Distribution & Drive Unit (PDDU)
- DC-DC HKPS Card
- EPS Switch Card
- Switch Logic Card
- Load Switch Card (2)
- 28V DC-DC Converter Card
- Slave I/O Card
- Motor Driver Card
- EPS Module I/F Card
- EPS Backplane

Pyro Initiator Unit (PIU)
- Pyro Initiator Card (1-O; 2-L)
- Prop Valve Driver Card (1-O; 1-L)

Command & Data Handling (C&DH)

Unregulated Loads
- Propulsion
- Telecom
- AD&C
- Thermal
- Cameras
- MVACS (L)

Regulated Loads
- DST/CDU/TMU
- PMIRR (O)

Motor Loads
- S/A’s (O & L)
- HGA (O), MGA (L)

Power
- PIU Power
- Thermal Battery (L)
- MFB Secondary Pwr

Telemetry
- Optical Encoders
- PIU Power

MFB
- Power
- Optical Encoders
- PIU Power
- MFB

Power Distribution
- Pwr Tim
- CCU Card
- Power
- Discrete Commands & Telemetry
- Power
- Discrete Commands & Telemetry
- Power
- Command & Data Handling (C&DH)
What Does an Nuclear Powered EPS Look Like & How Does it Work?

- **Power**
 - (2) Advanced Radioisotope Power System (ARPS) - GFE
 - (4) General Purpose Heat Sources (GPHS)
 - (16) AMTEC Cells
 - 4.7V per Cell
 - 19 kg
 - 15.3” (Diameter)
 - 105We @ EOL

- **Load**
 - (4) General Purpose Heat Sources (GPHS)
 - (16) AMTEC Cells
 - 4.7V per Cell
 - 19 kg
 - 15.3” (Diameter)
 - 105We @ EOL

- **Shunt Resistor Banks** (16 Legs)

- **Command & Data Handling (C&DH)**

- **Loads**
 - Prop & Batt Xdcrs
 - SDST
 - IMU, Star Tracker
 - Payloads
 - Thermal
 - Star 48

- **Shuttle/IUS/T0 I/Fs**
 - 28V Power/RSense
 - Trickle Charge
 - Hardline Tlm
 - Safety Inhibits

- **Latch Valve Thrusters**
 - S/C NSIs
 - Star48 NSIs
What Sort of Tasks does an EPS S/C Engineer Perform?

• **Technical**
 – Calculate How Much Power is Required to Operate the Spacecraft
 – Calculate How Big a Solar Array or Nuclear Source is Required
 • Predict Power Variations on a Day to Day / Hour to Hour Basis
 – Calculate How Big a Battery is Needed for Eclipse Periods
 • Depth of Discharge / Life Cycles
 – Design & Test the Circuitry to Control, Condition and Distribute Power
 • Both Digital and Analog Circuit Design and Analysis
 – Derive the Software Requirements Necessary to Manage the EPS
 – Support Spacecraft Level Integration & Testing
 – Troubleshoot Problems as they Occur
 – Support Launch Operations @ KSC or VAFB
 – Operate the Spacecraft During the Mission
What Sort of Tasks does an EPS S/C Engineer Perform?

• **Programmatic**
 – Manage Large Budgets and Complex Schedules
 – Manage Subcontractor Suppliers
 – Present Status to Management and the Customer
 • Both Technical and Programmatic
 – Supervise the Supporting Engineering Staff
 – Give the Final GO for Launch
 – Write Technical Papers, Give Presentations to Industry & the Public
What Sort of College Majors do EPS Engineers Have?

- Electrical Engineering
- Mechanical Engineering
- Physics
- Chemical Engineering
- Nuclear Engineering
- Aerospace Engineering
- Computer Science
- Engineering (General)
- Engineering Management
Spacecraft
Electrical Power Subsystem (EPS)
Overview

Paul M. Anderson
Lockheed Martin Astronautics
(303) 971-4519