Gateway To Space

ASEN 1400

Class #x2

Colorado Space Grant Consortium
Today:

- Extra credit for being here tonight

- Goal to be done by 9 PM

- Need to get through SD card write and Excel
Full Sensor Code Testing:

- Now let’s integrate all the code and sensors together and test

- We will review code but you will use a pre-coded sketch

- Everything should look familiar
// Definitions
// Temperature Sensor #1
int temp1;
float temp1Volt;
float temp1C;
float temp1F;

// Temperature Sensor #2
int temp2;
float temp2Volt;
float temp2C;
float temp2F;

// Humidity Sensor
int humidity;
float humidityVolt;
float RH;

// Pressure Sensor
int pressure;
float pressureVolt;
float psi;

// Accelerometer X
int accelX;
float accelXVolt;
float accelXG;

// Accelerometer Z
int accelZ;
float accelZVolt;
float accelZG;
Full Sensor Code Testing:

```cpp
void setup() {
// put your setup code here, to run once:

    Serial.begin(9600);

// setup the LED Visual Display
    pinMode(3, OUTPUT);  //SD Card writing
    pinMode(4, OUTPUT);  //Arduino on
    pinMode(5, OUTPUT);  //Sensors/sketch running
    pinMode(6, OUTPUT);  //Sensors/sketch running
    pinMode(7, OUTPUT);  //Sensors/sketch running
    pinMode(9, OUTPUT);  //Sensors/sketch running
}
```
Full Sensor Code Testing:

```c
void loop() {
  // put your main code here, to run repeatedly:
  // Turn script running leds OFF at begining of loop
  digitalWrite(3, LOW);
digitalWrite(4, LOW);
digitalWrite(5, LOW);
digitalWrite(6, LOW);
digitalWrite(7, LOW);
digitalWrite(9, LOW);

delay(500);

  // Turn script running leds ON at begining of loop
  digitalWrite(3, HIGH);
digitalWrite(4, HIGH);
digitalWrite(5, HIGH);
digitalWrite(6, HIGH);
digitalWrite(7, HIGH);
digitalWrite(9, HIGH);
}
```
Full Sensor Code Testing:

temp1 = analogRead(A0);
temp1Volt = temp1*(5.0/1023);
temp1C = (temp1Volt - 0.5)/(0.01);
temp1F = (temp1C*(9.0/5.0) + 32);
Serial.print("Temp1 ");
Serial.print(temp1F, 2);

temp2 = analogRead(A1);
temp2Volt = temp2*(5.0/1023);
temp2C = (temp2Volt - 0.5)/(0.01);
temp2F = (temp2C*(9.0/5.0) + 32);
Serial.print("\t Temp2 ");
Serial.print(temp2F, 2);
Full Sensor Code Testing:

```cpp
humidity = analogRead(A2);
humidityVolt = humidity*(5.0/1023);
RH = (((humidityVolt/5.0)-0.16)/0.0062);
Serial.print("\t RH ");
Serial.print(RH, 2);

pressure = analogRead(A3);
pressureVolt = pressure*(5.0/1023);
psi = (pressureVolt-0.5)*(15.0/4.0);
Serial.print("\t PSI ");
Serial.print(psi, 2);
```
Full Sensor Code Testing:

```cpp
accelX = analogRead(A4);
accelXVolt = accelX*(5.0/1023);
accelXG = (accelXVolt - (3.3/2))/(0.330);
Serial.print("\t XG ");
Serial.print(accelXG,3);

accelZ = analogRead(A5);
accelZVolt = accelZ*(5.0/1023);
accelZG = (accelZVolt - (3.3/2))/(0.330);
Serial.print("\t ZG ");
Serial.print(accelZG,3);

Serial.println();
```
Full Sensor Code Testing:

- Download code and run and verify it works....
Full Sensor Code Testing:

- Should look like this

<table>
<thead>
<tr>
<th>Temp1</th>
<th>Temp2</th>
<th>RH</th>
<th>PSI</th>
<th>XG</th>
<th>ZG</th>
</tr>
</thead>
<tbody>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.98</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>45.14</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>45.14</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>70.45</td>
<td>72.21</td>
<td>44.51</td>
<td>12.07</td>
<td>0.021</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.51</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.51</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>69.57</td>
<td>71.33</td>
<td>44.35</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>70.45</td>
<td>72.21</td>
<td>44.83</td>
<td>12.07</td>
<td>0.021</td>
<td>1.132</td>
</tr>
<tr>
<td>70.45</td>
<td>71.33</td>
<td>44.83</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.51</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>70.45</td>
<td>72.21</td>
<td>44.51</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.67</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>45.14</td>
<td>12.09</td>
<td>0.021</td>
<td>1.132</td>
</tr>
</tbody>
</table>
Part 4 – Arduino Race Track

A. SHIELD Integration
B. SD Card Code Integration
C. Data Retrieval
MicroSD Card Shield:

- Arduino Uno
- Micro SD Card Shield
- LEDs
- Monitor
- PC/Mac
- LEDs
- AccelZ
- AccelX
- Pressure
- Humidity
- Temp 2
- Temp 1
Part 4 – Arduino Race Track

A. SHIELD Integration
B. SD Card Code Integration
C. Data Retrieval
MicroSD Card Shield:

- Arduino Uno
- LEDS
- PC/Mac
- Monitor
- MicroSD Card Shield
- LEDs
- AccelZ
- AccelX
- Pressure
- Humidity
- Temp 2
- Temp 1
Micro SD Card Shield:

- Insert microSD card
Micro SD Card Shield:

- Insert microSD card
Micro SD Card Shield:

- Align pins to Arduino headers and connect
Micro SD Card Shield:

- Connect Balloon Shield to stack
Micro SD Card Shield:

- Reconnect USB and rerun same code

<table>
<thead>
<tr>
<th>Temp1</th>
<th>Temp2</th>
<th>RH</th>
<th>PSI</th>
<th>XG</th>
<th>ZG</th>
</tr>
</thead>
<tbody>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.98</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>45.14</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>45.14</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>70.45</td>
<td>72.21</td>
<td>44.51</td>
<td>12.07</td>
<td>0.021</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.67</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.51</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.67</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>69.57</td>
<td>71.33</td>
<td>44.35</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>70.45</td>
<td>72.21</td>
<td>44.83</td>
<td>12.07</td>
<td>0.021</td>
<td>1.132</td>
</tr>
<tr>
<td>70.45</td>
<td>71.33</td>
<td>44.83</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.51</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>70.45</td>
<td>72.21</td>
<td>44.83</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>71.33</td>
<td>44.67</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>70.45</td>
<td>72.21</td>
<td>44.51</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>72.21</td>
<td>44.67</td>
<td>12.07</td>
<td>0.036</td>
<td>1.132</td>
</tr>
<tr>
<td>71.33</td>
<td>71.33</td>
<td>44.14</td>
<td>12.09</td>
<td>0.021</td>
<td>1.132</td>
</tr>
</tbody>
</table>
Part 4 – Arduino Race Track

A. SHIELD Integration
B. SD Card Code Integration
C. Data Retrieval
MicroSD Card Shield:
Part 4 – Arduino Race Track

A. SHIELD Integration
B. SD Card Code Integration
C. Data Retrieval
MicroSD Card Shield:

LEDs

Arduino Uno

Micro SD Card Shield

Monitor

PC/Mac

LEDs

AccelZ

AccelX

Pressure

Humidity

Temp 2

Temp 1
Micro SD Card Shield:

- Insert microSD card
Micro SD Card Shield:

- Insert microSD card
Micro SD Card Shield:

- Align pins to Arduino headers and connect
Micro SD Card Shield:

- Connect Balloon Shield to stack
Micro SD Card Shield:

- Reconnect USB and rerun same code
Part 4 – Arduino Race Track

A. SHIELD Integration
B. SD Card Code Integration
C. Data Retrieval
- Now let’s explore the code needed to record this data to an SD Card

“"This is your last chance ... After this, there is no turning back. You take the blue pill - the story ends, you wake up in your bed, and believe whatever you want to believe. You take the red pill, ... you stay in Wonderland, and I show you, how deep the rabbit-hole goes.”

~ Morpheus’ Warning To Neo (From The Film; “The Matrix”) ~
SD Card Code:

- SD card writing uses **libraries** built into the Arduino software

- Code gets a little more complicated at this point but relatively easy compared to other languages that write to SD cards
SD Card Code:

- **#include** adds libraries

- **LOG_INTERVAL** is our sample rate

- **uint32_t** is our time stamp timer

- **logFileName** is our sd card file name

- **ledState** = is our LED blink variable

- **chipSelect** required by sd

```c
// Include Files for SD card
#include <SD.h>
#include <SPI.h>

// Controls for the data logging system
const int LOG_INTERVAL = 500;

// Time keeper
uint32_t timeStamp = 0;

// Variable for file name
char logFileName[16];

// Use this LED for your writing input
int ledState = 0;
```
SD Card Code:

- Define character variables for data storage technique

```c
// Definitions
// Temperature Sensor #1
int temp1;
float temp1Volt;
float temp1C;
float temp1F;
char temp1FString[7];

// Temperature Sensor #2
int temp2;
float temp2Volt;
float temp2C;
float temp2F;
char temp2FString[7];

// Humidity Sensor
int humidity;
float humidityVolt;
float RH;
char RHString[7];
```
SD Card Code:

- Define character variables for data storage technique

```cpp
// Pressure Sensor
int pressure;
float pressureVolt;
float psi;
char psiString[7];

// Accelerometer X
int accelX;
float accelXVolt;
float accelXG;
char accelXGString[7];

// Accelerometer Z
int accelZ;
float accelZVolt;
float accelZG;
char accelZGString[7];
```
SD Card Code:

- Define a string variable to store character data storage

```java
// This variable will hold the data from a read cycle
String dataString = "";
```
- Define a string variable to contain data headers

String sensorNames = "Time Stamp (ms), Temp1 (F), Temp2 (F), RH (%) Pres (psi), xg (g), zg (g)";
SD Card Code:

- New Void Setup code...

```cpp
void setup() {
    // put your setup code here, to run once:

    Serial.begin(9600);

    // setup the LED Visual Display
    pinMode(3, OUTPUT);  // SD Card writing
    pinMode(4, OUTPUT);  // Arduino on
    pinMode(5, OUTPUT);  // Sensors/sketch running
    pinMode(6, OUTPUT);  // Sensors/sketch running
    pinMode(7, OUTPUT);  // Sensors/sketch running
    pinMode(9, OUTPUT);  // Sensors/sketch running
```
SD Card Code:

- New Void Setup code...

```c
// turn on Arduino LED

digitalWrite(4, HIGH);  // Leave on while power is on

// SD Card setup

// make sure that the default chip select pin is set to output,

pinMode(10, OUTPUT);  // To make the SPI (microSD card) in

pinMode(chipSelect, OUTPUT);  // Set the Chip Select pin

// This function will set up the SD card so we can write to it.
// Also the header of the log file will be written to the file.

SDCardInit();
```
New Void Loop:

```c
void loop() {  
    // put your main code here, to run repeatedly:

    // Turn script running leds OFF at begining of loop
    digitalWrite(5, LOW);
    digitalWrite(6, LOW);
    digitalWrite(7, LOW);
    digitalWrite(9, LOW);

    // Delay your time interval
    delay(LOG_INTERVAL);

    // Turn script running leds ON at begining of loop
    digitalWrite(5, HIGH);
    digitalWrite(6, HIGH);
    digitalWrite(7, HIGH);
    digitalWrite(9, HIGH);
}
New Void Loop:

- Clear the `dataString` at beginning of loop
- Record the time stamp
- Add to `dataString`

```c
// Clear out dataString to start a new record.
dataString = "";

// Log the time
timeStamp = millis();
dataString = String(timeStamp);
Serial.print(timeStamp);
```
**SD Card Code:**

- Convert sensor value to character and store in string

```c
temp1 = analogRead(A0);
temp1Volt = temp1*(5.0/1023);
temp1C = (temp1Volt - 0.5)/(0.01);
temp1F = (temp1C*(9.0/5.0) + 32);
Serial.print(';', ');
Serial.print(temp1F, 2);
dtostrf(temp1F, 6, 2, temp1FString); //
dataString = dataString +""," + temp1FString;
```
SD Card Code:

- Think of dataString as a sentence

- Eventually we will write our sentence to the SD card

- Think of the **words** of the sentence are your sensors values converted from numbers to characters to strings

- **Word = temp1FString**
**SD Card Code:**

- Full Example…

> temp1F = 82.1

Convert to string - `dtostrf` does this
> temp1fString = “--82.1-”

Add to the sentence
> dataString = dataString + “,” + temp1FString;
SD Card Code:

- Convert sensor value to character and store in string

```cpp
temp1 = analogRead(A0);
temp1Volt = temp1*(5.0/1023);
temp1C = (temp1Volt - 0.5)/(0.01);
temp1F = (temp1C*(9.0/5.0) + 32);
Serial.print(',');
Serial.print(temp1F, 2);
dtostrf(temp1F, 6, 2, temp1FString); // Code
dataString = dataString +"," + temp1FString;
```
**SD Card Code:**

- Convert sensor value to character and store in string

```cpp
temp2 = analogRead(A1);
temp2Volt = temp2*(5.0/1023);
temp2C = (temp2Volt - 0.5)/(0.01);
temp2F = (temp2C*(9.0/5.0) + 32);
Serial.print(',');
Serial.print(temp2F, 2);
dtostrf(temp2F, 6, 2, temp2FString); // Convert
dataString = dataString + ""," + temp2FString;

humidity = analogRead(A2);
humidityVolt = humidity*(5.0/1023);
RH = (((humidityVolt/5.0)-0.16)/0.0062);
Serial.print(',');
Serial.print(RH, 2);
dtostrf(RH, 6, 2, RHString); // Convert
dataString = dataString + ""," + RHString;
```
**SD Card Code:**

- Convert sensor value to character and store in string
- Include a `Serial.println()` at the end for a new line

```c
pressure = analogRead(A3);
pressureVolt = pressure*(5.0/1023);
psi = (pressureVolt-0.5)*(15.0/4.0);
Serial.print('r','
Serial.print(psi, 2);
dtostrf(psi, 6, 2, psiString);
dataString = dataString + "," + psiString;

accelX = analogRead(A4);
accelXVolt = accelX*(5.0/1023);
accelXG = (accelXVolt - (3.3/2))/(0.330);
Serial.print('r','
Serial.print(accelXG, 3);
dtostrf(accelXG, 6, 2, accelXGString);
dataString = dataString + "," + accelXGString;

accelZ = analogRead(A5);
accelZVolt = accelZ*(5.0/1023);
accelZG = (accelZVolt - (3.3/2))/(0.330);
Serial.print('r','
Serial.print(accelZG, 3);
dtostrf(accelZG, 6, 2, accelZGString);
dataString = dataString + "," + accelZGString;

Serial.println();
```
SD Card Code:

- Call the write to sd magic

- If successful, blink led

- Loop

```c
// Write to the SD card and if a write
// The function writeDataToSD returns

if(writeDataToSD())
{
 // Change the State of the LED from
 ++ledState;
 // Handle the case where the LED state
 if (ledState > 1) {
 ledState = 0;
 }
}

// Update the activity LED to show a
// Change

digitalWrite(3, ledState);
```
**SD Card Code:**

- If you were to upload the code, would it work?
**SD Card Code:**

- If you were to upload the code, would it work?
- No because functions are not defined yet...

```c
// SD Card setup
// make sure that the database is initialized
pinMode(10, OUTPUT);
pinMode(chipSelect,);

// This function will set
// Also the header of the
SDCardInit();

// The function writeData
if(writeDataToSD())
{
 // Change the State of
 ++ledState;
 // Handle the case where
```
Here is the code for `SDCardInit()`:

```java
boolean SDCardInit()
{
 Serial.println("Initializing SD card... ");
 // see if the card is present and can be initialized:
 if (!SD.begin(chipSelect))
 {
 Serial.println("Card failed, or not present");
 delay(100);
 // Can't do anything more. Try another time....
 return 0;
 }
 // The Card is present so find an unused file name
 Serial.println("searching for an unused file name... ");
 // Start with LOG0.CSV and count up until an unused file name is found
 for (long i=0; i < 1000; i++)
 {
 sprintf(logFileName, "LOG%d.CSV", i);
 if (!SD.exists(logFileName))
 {
 break;
 }
 }
}
```
**SD Card Code:**

- Here is the code for `SDCardInit();`

- But wait there is more!

- We still have the other function

```java
Serial.print("The Log filename is: ");
Serial.println(logFileName);

File dataFile = SD.open(logFileName, FILE_WRITE);

// Write the header including sensor names to the newly opened file
dataString = sensorNames;

if (dataFile)
{
 dataFile.println(dataString);
 dataFile.close();
 Serial.println("SD Card initialized and data written.");
 return(1); // Able to write to SD card
}
else
{
 Serial.println("SD card present but unable to write to file");
 sprintf(logFileName, "LOG0.CSV"); // Clear out the file
 return(0); // Unable to write to SD
}
```
SD Card Code:

- Here is the code for `writeDataToSD`:

```java
boolean writeDataToSD ()
{
 File dataFile = SD.open(logFileName, FILE_WRITE);

 // if the file is available, write to it:
 if (dataFile)
 {
 dataFile.println(dataString);
 dataFile.close();
 return(1);
 }

 // if the file isn't open, notify that there was an error:
 else {
 Serial.println();
 Serial.print("error writing to file: ");
 Serial.println(logFileName);
 dataFile.close();
 delay(100);
 Serial.println("Re - Initializing SD card...");
 return(SDCardInit());
 }
}
```
**SD Card Code:**

- Creating tabs is a great way to organize your code.
**SD Card Code:**

- Creating one and press OK
- Make sure to type it exactly as the function
SD Card Code:

- Brand new real estate to type code!
SD Card Code:

- Create another one
**SD Card Code:**

- Every tab you create, creates a new *.ino* file in the folder for your main tab or sketch you were working.

- Must keep all *.ino* files in the folder for the code to work properly.

- Can only open the main *.ino* file directly.
**SD Card Code:**

- Now start typing
SD Card Code:

- No. Just kidding. Go to the website and download SD Code Complete (zip file)

Spring 2016 Class Presentations

Click links below to open in browser or right click link and do save as if you want a local copy.

Some files are large and will take some time to download.

- Introduction (78 MB) > #01
- BalloonSat Overview (42 MB) > #03
- Jim Slides (475 MB)
- Solar System Exploration > #05
- Soldering 101 > #08
- Arduino Part 1 (35 MB) > #08
- Ext Temp Code > #10
- Arduino Part 3 > #10
- SD Card Code
- Sensor Code
- Data Sheets
**SD Card Code:**

- **Unzip and use directly** or open tabs, copy and paste content from one tab to your tab

- **Build and check for errors**

- **Upload and watch LED blink**

- **Raise hand for help**
Part 4 – Arduino Race Track

A. SHIELD Integration
B. SD Card Code Integration
C. Data Retrieval
Data Retrieval:

- Press the reset button on your microSD card Shield and record data as follows:

1. Breath on your **humidity sensor twice**
2. **Suck on pressure** sensor twice
3. **Touch both temp** sensors for 5 seconds each
4. Orient your accelerometer (**Z up/down, X up/down**) 10 seconds each direction
5. Breath on your **humidity sensor twice**
6. **Suck on pressure** sensor twice
7. **Disconnect USB** from Arduino
Data Retrieval:

- Rotate your accelerometer like…

4. X Down

5. X Up
Data Retrieval:

8. Z Down

9. Z UP
Data Retrieval:

- Remove microSD card from Uno and insert into SD card adapter
Data Retrieval:

- Remove microSD card from Uno and insert into SD card adapter
Data Retrieval:

- Insert SD card adapter into your laptop
Data Retrieval:

- Navigate to card and copy last LOG file to your desktop

- Open this file with Excel
Data Retrieval:

- Graph all data minus the time stamp

- Mac Users you must change tab name to remove “.”
Data Retrieval:

- Do you see your data markers?
Data Retrieval:

- Re-plot just your accel data
Data Retrieval:

- How can you use this data?
Data Retrieval:

- So that’s the SD card stuff

- Questions?
SUCCESS

Because you too can own this face of pure accomplishment
Alternate Power:

- For balloon flight, need to power Arduino with 9V battery

- Do not connect USB and 9V ever
Alternate Power:

- Flip the switch ON
Alternate Power:

- You are now recording data until power is lost
**Micro SD Card Shield:**

- Disconnect USB cable and Balloon Shield

AND GO HOME