Part 3 – Arduino Road Trip

A. Humidity Sensor
B. Temperature Sensor
C. Pressure Sensor
D. Accelerometers
E. External Temp Sensor
Pressure Sensor:

- Arduino Uno
 - PC/Mac
 - LEDs
 - Monitor
 - Pressure
 - Humidity
 - Temp1
Pressure Sensor:

- Pressure Sensors is fragile and $$$

- A bit tricky to see the markings to install correctly

- Can use it to determine pressure/altitude of payload

- **To be safe, please disconnect power from your Arduino**
Pressure Sensor:

- Pressure sensor orientation
Pressure Sensor:

- Pressure sensor orientation
Pressure Sensor:

- Connect GND to Pin 4, 5V to Pin 2, and Pin 2 to A4 on the Arduino
Pressure Sensor:

- Connect GND to Pin 4, 5V to Pin 2, and Pin 3 to A4 on the Arduino

<table>
<thead>
<tr>
<th>Pin 1</th>
<th>Pin 2</th>
<th>Pin 3</th>
<th>Pin 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>(V_{\text{supply}})</td>
<td>OUTPUT+</td>
<td>GND</td>
</tr>
</tbody>
</table>
Pressure Sensor:

- Connect GND to Pin 4, 5V to Pin 2, and Pin 3 to A3 on the Arduino
Pressure Sensor:

- Look at the data sheet to understand output of the sensor

- Known:
 V_{\text{supply}} = 5.0 \text{ V}
 P_{\text{max}} = 15.0 \text{ psi}
 P_{\text{min}} = 0.0 \text{ psi}
 \text{Output}(V) = \text{measured}
 \text{Pressure applied} = \text{solve}

\[
\text{Output} (V) = \frac{0.8 \times V_{\text{supply}}}{P_{\text{max.}} - P_{\text{min.}}} \times (\text{Pressure}_{\text{applied}} - P_{\text{min.}}) + 0.10 \times V_{\text{supply}}
\]
Pressure Sensor:

- Here’s the algebra and the equation to code

\[
\text{Output}(V) = \left(\frac{0.8 \cdot V_{\text{SUPPLY}}}{P_{\text{max}} - P_{\text{min}}} \right) \cdot (\text{pressure}_{\text{applied}} - P_{\text{min}}) + 0.10 \cdot V_{\text{supply}}
\]

\[
\text{Output}(V) = \left(\frac{0.8 \cdot 5.0}{15.0 - 0.0} \right) \cdot (\text{pressure}_{\text{applied}} - 0.0) + 0.10 \cdot 5.0
\]

\[
\text{Output}(V) = \left(\frac{4.0}{15.0} \right) \cdot (\text{pressure}_{\text{applied}}) + 0.5
\]

\[
\frac{15.0}{4.0} \cdot (\text{Output}(V) - 0.5) = \text{pressure}_{\text{applied}}
\]
// Definitions
int sensor;
float sensorVolt;
float sensorUnits;

void loop() {
 // put your main code here, to run
 sensor = analogRead(A3);
sensorVolt = sensor*(5.0/1023);
sensorUnits = (sensorVolt-0.5)*(15.0/4.0);
 Serial.print(sensor);
 Serial.print("\t voltage ");
 Serial.print(sensorVolt);
 Serial.print("\t units ");
 Serial.println(sensorUnits);
 if(sensorUnits < 12.20) {
 digitalWrite(5, HIGH);
 }
 if(sensorUnits < 10.10) {
 digitalWrite(6, HIGH);
 }
 if(sensorUnits < 8.10) {
 digitalWrite(7, HIGH);
 }
 if(sensorUnits < 3.10) {
 digitalWrite(9, HIGH);
 }
 delay(100);
}
Pressure Sensor:

- Build and Upload

- **DO NOT BLOW** or **DO NOT APPLY PRESSURE**; it will break the sensor

- Use solder sucker

- Also use mouth but be careful not to spit

PLEASE SAVE YOUR SKETCH FILE
Pressure Sensor:

- While waiting for the rest of the group, play with your new sensor

- Try to get your sensor to zero

PLEASE SAVE YOUR SKETCH FILE
Balloon Shield Build Part 4:

- Disconnect your Balloon Shield and add the Pressure Sensor split header
- Bend leads to hold in place
- Solder from the bottom
- Trim leads
Balloon Shield Build Part 4:

- Install Pressure Sensor into headers
Balloon Shield Build Part 4:

- Reconnect your Balloon Shield to the Arduino

- Connect USB and reload code

- Verify same results

![Arduino Monitor](image.png)
Part 3 – Arduino Road Trip

A. Humidity Sensor
B. Temperature Sensor
C. Pressure Sensor
D. Accelerometers
E. External Temp Sensor
Accelerometer:

Arduino Uno

Monitor ↔ PC/Mac ↔ LEDs

AccelZ ↔ AccelX ↔ Pressure ↔ Humidity ↔ Temp1
Accelerometer:

- Accelerometers are used to detect forces acting on a payload

- This is a 3 axis accelerometer

- Measures g forces in X, Y, and Z directions

- Only have two analog channels left so X and Z
Accelerometer:

- Wire accelerometer as shown

Vcc is to 3.3V
GND is to GND
X is to A4
Z is to A5
Accelerometer:

- Wire accelerometer as shown

Vcc is to 3.3V
GND is to GND
X is to A4
Z is to A5
Accelerometer:

- Wire accelerometer as shown

Vcc is to 3.3V
GND is to GND
X is to A4
Z is to A5
Accelerometer:

- Looking at the data sheet...

ADXL335

The ADXL335 output is ratiometric, therefore, the output sensitivity (or scale factor) varies proportionally to the supply voltage. At $V_S = 3.6$ V, the output sensitivity is typically 360 mV/g. At $V_S = 2$ V, the output sensitivity is typically 195 mV/g.

The zero g bias output is also ratiometric, thus the zero g output is nominally equal to $V_S/2$ at all supply voltages.

<table>
<thead>
<tr>
<th>SENSITIVITY (RATIOMETRIC)</th>
<th>Each axis</th>
<th>270</th>
<th>300</th>
<th>330</th>
<th>mV/g</th>
<th>%/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity at X_{OUT}, Y_{OUT}, Z_{OUT}</td>
<td>$V_S = 3$ V</td>
<td>±0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity Change Due to Temperature</td>
<td>$V_S = 3$ V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZERO g BIAS LEVEL (RATIOMETRIC)</th>
<th>$V_S = 3$ V</th>
<th>1.35</th>
<th>1.5</th>
<th>1.65</th>
<th>V</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 g Voltage at X_{OUT}, Y_{OUT}</td>
<td>1.2</td>
<td>1.5</td>
<td>1.8</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 g Voltage at Z_{OUT}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 g Offset vs. Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| NOISE PERFORMANCE | | | | |
|-------------------| | | |

Accelerometer:

- 3.3V/2 is what it should read at “zero G” orientation or 1.65V

- Then 330 mV for every G so…

\[G_s = \frac{\text{Accel voltage} - 1.65 \text{ V}}{0.330 \text{ V}} \]

ADXL335

The ADXL335 output is ratiometric, therefore, the output sensitivity (or scale factor) varies proportionally to the supply voltage. At \(V_s = 3.6 \text{ V} \), the output sensitivity is typically 360 mV/g. At \(V_s = 2 \text{ V} \), the output sensitivity is typically 195 mV/g.

The zero g bias output is also ratiometric, thus the zero g output is nominally equal to \(V_s/2 \) at all supply voltages.
Accelerometer:

- A4, A5, print statements and comment out LED ifs

```c
void loop() {
    // put your main code here, to

    sensorX = analogRead(A4);
    sensorZ = analogRead(A5);
    sensorVoltX = sensorX*(5.0/1023);
    sensorVoltZ = sensorZ*(5.0/1023);
    sensorUnitsX = (sensorVoltX-(3.3/2))/(0.330);
    sensorUnitsZ = (sensorVoltZ-(3.3/2))/(0.330);
    Serial.print("X ");
    Serial.print(sensorUnitsX);
    Serial.print(" \t Z ");
    Serial.println(sensorUnitsZ);
}
```

```c
// Definitions
int sensorX;
int sensorZ;
float sensorVoltX;
float sensorVoltZ;
float sensorUnitsX;
float sensorUnitsZ;
```
Accelerometer:

- Upload your code and launch your serial monitor (no LEDs this time)

- Rotate your breadboard and look for changes in both X and Z

- X up and X down
- Z up and Z down
Accelerometer:

- Upload your code and launch your serial monitor

- When Z up ~ 1.0G
- When Z down ~ -1.0G
- When X up ~ 1.0G
- When X down ~ -1.0G
Accelerometer:

- Disconnect your Balloon Shield and add the Accelerometer

- YES, humidity sensor is very close to accel board

- Solder from bottom of board
Accelerometer:

- Reconnect your Balloon Shield to the Arduino
- Connect USB and reload code
- Verify same results
Part 3 – Arduino Road Trip

A. Humidity Sensor
B. Temperature Sensor
C. Pressure Sensor
D. Accelerometers
E. External Temp Sensor
External Temperature Sensor:

Arduino Uno

LEDs

PC/Mac

Monitor

AccelZ

AccelX

Pressure

Humidity

Temp 2

Temp 1

LEDs
External Temperature Sensor:

- Add Orange LED to D4
- Red wire to + and Black wire to -
External Temperature Sensor:

- Add Blue LED to D3
- Red wire to + and Black wire to -
External Temperature Sensor:

- Add Temp2 to Temp2
- Note wire colors
External Temperature Sensor:

- Open Temp1 Sketch; save as Temp2

```c
// Definitions
int sensor;
float sensorVolt;
float sensorUnits;
float sensorUnitsC;
```

```c
void setup() {
    // put your setup code here, to run once:

    Serial.begin(9600);

    // setup the LED Visual Display
    pinMode(3, OUTPUT); // Blue LED
    pinMode(4, OUTPUT); // Orange LED
    pinMode(5, OUTPUT); // Green LED
    pinMode(6, OUTPUT); // Purple LED
    pinMode(7, OUTPUT); // Red LED
    pinMode(9, OUTPUT); // Yellow LED
}
```
```cpp
void loop() {
    // put your main code here, to run repeatedly:

    sensor = analogRead(A1);  
    sensorVolt = sensor * (5.0/1023);  
    sensorUnitsC = (sensorVolt - 0.5)/(0.01);  
    sensorUnits = (sensorUnitsC*(9.0/5.0) + 32);  
    Serial.print(sensor);  
    Serial.print("\t voltage ");  
    Serial.print(sensorVolt);  
    Serial.print("\t units ");  
    Serial.println(sensorUnits);

    // Turn script running leds OFF at beginning of lip
    digitalWrite(3, LOW);  //Blue LED
    digitalWrite(4, LOW);  //Orange LED
    digitalWrite(5, LOW);  //Green LED
    digitalWrite(6, LOW);  //Purple LED
    digitalWrite(7, LOW);  //Red LED
    digitalWrite(9, LOW);  //Yellow LED

    digitalWrite(3, HIGH);  
    digitalWrite(4, HIGH);  
    delay(100);
```
External Temperature Sensor:

- Build and upload your sketch

- Temp2 will stick outside your BalloonSat

- LED 3 and 4, will also stick outside your BalloonSat
External Temperature Sensor:

- Build and upload your sketch

- Temp2 will stick outside your BalloonSat

- LED 3 and 4, will also stick outside your BalloonSat
Part 3 – Arduino Road Trip

A. Humidity Sensor
B. Temperature Sensor
C. Pressure Sensor
D. Accelerometers
E. External Temp Sensor
Great Job!

My fist....

bump it
Full Sensor Code Testing:

- Now let’s integrate all the code and sensors together and test

- We will review code but you will use a pre-coded sketch

- Everything should look familiar
Full Sensor Code Testing:

```c
// Definitions
// Temperature Sensor #1
int temp1;
float temp1Volt;
float temp1C;
float temp1F;

// Temperature Sensor #2
int temp2;
float temp2Volt;
float temp2C;
float temp2F;

// Humidity Sensor
int humidity;
float humidityVolt;
float RH;

// Pressure Sensor
int pressure;
float pressureVolt;
float psi;

// Accelerometer X
int accelX;
float accelXVolt;
float accelXG;

// Accelerometer Z
int accelZ;
float accelZVolt;
float accelZG;
```
Full Sensor Code Testing:

// Time keeper
// The time stamp used when recording data points
uint32_t timeStamp = 0;
void setup() {
 // put your setup code here, to run once:

 Serial.begin(9600);

 // setup the LED Visual Display
 pinMode(3, OUTPUT); //Arduino on
 pinMode(4, OUTPUT); //Internal Temp
 pinMode(5, OUTPUT); //External Temp
 pinMode(6, OUTPUT); //Humidity
 pinMode(7, OUTPUT); //Pressure
 pinMode(9, OUTPUT); //Accels

 // turn on Arduino LED
 digitalWrite(3, HIGH); // Leave on while power is on

 // Print Column Headers
 Serial.println("Time,Temp1F,Temp2F,RH,Pres,AccX,AccZ");
}
Full Sensor Code Testing:

```c
void loop() {
    // put your main code here, to run repeatedly:

    // Turn script running leds OFF at begining of loop
    digitalWrite(4, LOW);
    digitalWrite(5, LOW);
    digitalWrite(6, LOW);
    digitalWrite(7, LOW);
    digitalWrite(9, LOW);

    delay(500); // Amount of time between samples (milliseconds)

    // Log the time
    timeStamp = millis();
    Serial.print(timeStamp);
}
```
Full Sensor Code Testing:

```c
temp1 = analogRead(A0);
temp1Volt = temp1*(5.0/1023);
temp1C = (temp1Volt - 0.5)/(0.01);
temp1F = (temp1C*(9.0/5.0) + 32);
Serial.print("","");
Serial.print(temp1F, 2);
digitalWrite(4, HIGH);

temp2 = analogRead(A1);
temp2Volt = temp2*(5.0/1023);
temp2C = (temp2Volt - 0.5)/(0.01);
temp2F = (temp2C*(9.0/5.0) + 32);
Serial.print("","");
Serial.print(temp2F, 2);
digitalWrite(5, HIGH);
```
Full Sensor Code Testing:

```cpp
humidity = analogRead(A2);
humidityVolt = humidity*(5.0/1023);
RH = (((humidityVolt/5.0)-0.16)/0.0062);
Serial.print("\","\");
Serial.print(RH, 2);
digitalWrite(6, HIGH);

pressure = analogRead(A3);
pressureVolt = pressure*(5.0/1023);
psi = (pressureVolt-0.5)*(15.0/4.0);
Serial.print("\","\");
Serial.print(psi, 2);
digitalWrite(7, HIGH);
```
Full Sensor Code Testing:

```cpp
accelX = analogRead(A4);
accelXVolt = accelX*(5.0/1023);
accelXG = (accelXVolt - (3.3/2))/(0.330);
Serial.print("\\n");
Serial.print(accelXG,3);
Serial.println();
```

```cpp
accelZ = analogRead(A5);
accelZVolt = accelZ*(5.0/1023);
accelZG = (accelZVolt - (3.3/2))/(0.330);
Serial.print("\\n");
Serial.print(accelZG,3);
digitalWrite(9, HIGH);
```

```cpp
Serial.println();
```
Full Sensor Code Testing:

- Download code or get from desktop and run and verify it works....
Full Sensor Code Testing:

- Download code or get from desktop and run and verify it works....

Index of /images/TransferStudent/Work...

<table>
<thead>
<tr>
<th>Name</th>
<th>Last modified</th>
<th>Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Directory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balloon_Shield_Test_Code_no_SD/</td>
<td>2017-01-04 14:33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part_1_4_LED_and_Accels/</td>
<td>2017-01-04 10:46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part_1_4_LED_and_POT_no_ifs/</td>
<td>2017-01-04 09:25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part_1_4_LED_and_Pressure/</td>
<td>2017-01-04 13:24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part_1_4_LED_and_RH/</td>
<td>2017-01-04 15:23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part_1_4_LED_and_Temp/</td>
<td>2017-01-04 10:24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part_1_4_LED_and_Temp_2/</td>
<td>2017-01-04 16:03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Full Sensor Code Testing:

- Should look like this

```
Time,Temp1F,Temp2F,RH,Pres,AccX,AccZ
499,73.09,144.35,24.96,11.87,0.021,1.117
1003,72.21,120.59,24.96,11.87,0.021,1.102
1508,72.21,110.91,24.49,11.87,0.021,1.117
2012,72.21,114.43,24.96,11.87,0.021,1.117
2515,72.21,117.95,24.65,11.87,0.021,1.117
3019,72.21,111.79,24.65,11.89,0.021,1.117
3523,72.21,109.16,25.12,11.89,0.021,1.117
4027,71.33,116.19,24.80,11.89,0.021,1.102
4532,72.21,117.07,24.96,11.87,0.021,1.117
5036,72.21,110.91,24.80,11.87,0.021,1.117
5539,72.21,110.04,24.65,11.89,0.021,1.117
6043,72.21,117.07,24.96,11.87,0.021,1.117
6547,72.21,117.07,24.96,11.87,0.021,1.102
```
Part 4 – Arduino Race Track

A. SHIELD Integration
B. SD Card Code Integration
C. Data Retrieval
MicroSD Card Shield:

- **LEDs**
- **Arduino Uno**
- **Micro SD Card OpenLog**
- **PC/Mac**
- **Monitor**

Branches:
- **AccelZ**
- **AccelX**
- **Pressure**
- **Humidity**
- **Temp 2**
- **Temp 1**

Connections:
- LEDs to Arduino Uno
- Arduino Uno to Micro SD Card OpenLog
- Micro SD Card OpenLog to PC/Mac
- PC/Mac to Monitor
Part 4 – Arduino Race Track

A. SHIELD Integration
B. SD Card Code Integration
C. Data Retrieval
MicroSD Card Shield:

Micro SD Card OpenLog

Arduino Uno

LEDs

Monitor

PC/Mac

LEDs

AccelZ

AccelX

Pressure

Humidity

Temp 2

Temp 1
Micro SD Card OpenLog:

- Need to test the MicroSD Card OpenLog
- You will need to OpenLogs for your BalloonSat
- One on your Balloon Shield and one on the 2nd Arduino
Micro SD Card OpenLog:

- Insert MicroSD card as shown
Micro SD Card Shield:

- Connect wires to Balloon Shield

> VCC to 3.3 V

> GND to GND

> RXI to TX1
Micro SD Card Shield:

- Connect wires to Balloon Shield

> VCC to 3.3 V

> GND to GND

> RXI to TX1
Micro SD Card Shield:

- Connect wires to Balloon Shield

> VCC to 3.3 V

> GND to GND

> RXI to TX1
Micro SD Card Shield

- Connect wires to Balloon Shield

> VCC to 3.3 V

> GND to GND

> RXI to TX1
Micro SD Card Shield:

- Connect wires to Balloon Shield

> VCC to 3.3 V

> GND to GND

> RXI to TX1
Micro SD Card Shield:

- Reconnect USB and rerun same code

![Arduino Monitor Display]

```
Time, Temp1F, Temp2F, RH, Pres, AccX, AccZ
499, 73.09, 144.35, 24.96, 11.87, 0.021, 1.117
1003, 72.21, 120.59, 24.96, 11.87, 0.021, 1.102
1508, 72.21, 110.91, 24.49, 11.87, 0.021, 1.117
2012, 72.21, 114.43, 24.96, 11.87, 0.021, 1.117
2515, 72.21, 117.95, 24.65, 11.87, 0.021, 1.117
3019, 72.21, 111.79, 24.65, 11.89, 0.021, 1.117
3523, 72.21, 109.16, 25.12, 11.89, 0.021, 1.117
4027, 71.33, 116.19, 24.80, 11.89, 0.021, 1.102
4532, 72.21, 117.07, 24.96, 11.87, 0.021, 1.117
5036, 72.21, 110.91, 24.80, 11.87, 0.021, 1.117
5539, 72.21, 110.04, 24.65, 11.89, 0.021, 1.117
6043, 72.21, 117.07, 24.96, 11.87, 0.021, 1.117
6547, 72.21, 117.07, 24.96, 11.87, 0.021, 1.102
```
Part 4 – Arduino Race Track

A. SHIELD Integration
B. SD Card Code Integration
C. Data Retrieval
SD Card Code:

- Now let’s explore the code needed to record this data to an SD Card

“This is your last chance ... After this, there is no turning back. You take the blue pill - the story ends, you wake up in your bed, and believe whatever you want to believe.

You take the red pill, ... you stay in Wonderland, and I show you, how deep the rabbit-hole goes.”

~ Morpheus’ Warning To Neo (From The Film; “The Matrix”) ~
SD Card Code:

- The super cool thing about OpenLog is that anything you serial print is written to the OpenLog

- A new file is created if power is removed

- A new file is created if sd card is removed and re-inserted

- Can eject sd card while powered
Part 4 – Arduino Race Track

A. SHIELD Integration
B. SD Card Code Integration
C. Data Retrieval
Data Retrieval:

- Press the reset button on your microSD card Shield and record data as follows:

1. Breath on your humidity sensor twice
2. Suck on pressure sensor twice
3. Touch both temp sensors for 5 seconds each
4. Orient your accelerometer (Z up/down, X up/down) 10 seconds each direction
5. Breath on your humidity sensor twice
6. Suck on pressure sensor twice
7. Disconnect USB from Arduino
Data Retrieval:

- Rotate your accelerometer like…

4. X Down

5. X Up
Data Retrieval:

8. Z Down

9. Z UP
Data Retrieval:

Record end of file markers

Touch your temp sensor for 5 seconds

Suck on your pressure sensor

Breath on the humidity sensor

- Pull USB from Uno
Data Retrieval:

- Remove microSD card from Uno and insert into SD card adapter
Data Retrieval:

- Remove microSD card from Uno and insert into SD card adapter
Data Retrieval:

- Insert SD card adapter into your laptop
Data Retrieval:

- Navigate to card and copy last LOG file to your desktop

- Open this file with Excel
Data Retrieval:

- Graph all data minus the time stamp

- Mac Users you must change tab name to remove “.”
Data Retrieval:

- Do you see your data markers?
Data Retrieval:

- Re-plot just your accel data
Data Retrieval:

- How can you use this data?
Data Retrieval:

- So that’s the SD card stuff

- Redo it for the Open Log on your Balloon Shield
Part 4 – Arduino Race Track

A. SHIELD Integration
B. SD Card Code Integration
C. Data Retrieval
Part 4 – Arduino Race Track

A. SHIELD Integration
B. SD Card Code Integration
C. Data Retrieval

SUCCESS
Because you too can own this face of pure accomplishment
Alternate Power:

- For balloon flight, need to power Arduino with 9V battery

- Do not connect USB and 9V ever
Alternate Power:

- Flip the switch ON
Alternate Power:

- You are now recording data until power is lost
Micro SD Card Shield:

- Disconnect USB cable and Balloon Shield
Part 4 – Arduino Race Track

A. SHIELD Integration
B. SD Card Code Integration
C. Data Retrieval
MicroSD Card Shield:

- Arduino Uno
- Micro SD Card OpenLog
- LEDs
- Monitor
- PC/Mac
- LEDs
- AccelZ
- AccelX
- Pressure
- Humidity
- Temp 2
- Temp 1