My Background
Spacecraft Mechanism: *noun*
- A system of kinematic parts that collectively support space-faring systems
 - deployables
 - actuators
 - release devices
 - motors
 - pumps
 - gears
 - robotics
 - pyros
 - springs

Spacecraft Structure: *noun*
- An arrangement of load bearing elements that collectively support and protect space-faring systems
 - static g-load
 - shock
 - venting
 - thermal expansion
 - extreme heat
 - extreme cold
 - outgassing
 - atomic O_2
 - precision alignment
 - coatings
 - pressure vessels
 - ground support equipment
 - fasteners
 - grounding
 - vibration
 - thermal expansion
 - extreme heat
 - extreme cold
 - outgassing
 - atomic O_2
 - precision alignment
 - coatings
 - pressure vessels
 - ground support equipment
 - fasteners
 - grounding
ISS Solar Arrays
Space Structures & Mechanisms

Orion Crew Exploration Vehicle
Space Structures & Mechanisms

Deployable Optical Reflector
Space Structures & Mechanisms

Inflatable Structures
Space Structures & Mechanisms

On-Orbit Assembled Structures
Space Structures & Mechanisms

High Strain (Flexed) Structures
High Strain (Flexed) Structures
Designing a structure
Example: 50kg Payload

• Static G-load
 – Sustained load of ±20g
 • FOS of 2.0 to yield, 2.6 to ultimate, test to 1.2
 • FOS of 2.0 ultimate for mechanisms, test to 1.0
 – Stiffness >100Hz
 – Pass random vibration profile
 – Ground Support Equipment, withstand gravity
 • FOS of 5.0 ultimate failure, test to 2.0

Note the difference between margin of safety and factor of safety

\[MS = \frac{(\text{Allowable Stress})}{FS \times (\text{Actual Stress})} - 1 \]

Factor of safety is embedded in your requirements, a margin of safety of zero means that you meet your requirements.
Mass Acceleration Curve (MAC)

Random Vibration Profile
• Really think about the structural load path

- Directly connect primary structure to Base Plate

- Eliminate unnecessary structural junctions

- Weak junctions between major components

- Complex truss structure

- Jun '07 (SCR)

- Aug '07 (PDR)

- Mar '08 (CDR)
Good ideas:
• Try to limit part count
• Use traditional materials
 – Al 6061-T6 is great
 – Composites fill a unique niche

Always be thinking of:
• Flight Assembly
 – Wiring harnesses
 – Frequent re-assembly
• Reduce risk by incorporating off-the-shelf hardware
• Ground Support Equipment
• Accommodating the space environment
Designing a Structure & Mech.

– Flight assembly, think about step-by-step assembly
Structural Analysis
• Start the basics
 – Get a hand calc. approximation
 – “Roark’s Tables” handbook is your friend

\[F = ma \quad \sigma = \frac{F}{A} \quad \varepsilon = \frac{\sigma}{E} \]

• Resort to Finite Element Analysis
 – A powerful tool, can tell you a lot
 – Takes years of experience to properly use
 • (it’s hard to get trustworthy answerers)
<table>
<thead>
<tr>
<th>Case</th>
<th>Description</th>
<th>Equations</th>
<th>Maximum Moments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1d.</td>
<td>Left end fixed, right end fixed</td>
<td>(R_A = \frac{W}{E} (l - a)^2(l + 2a))</td>
<td>(\text{Max } M = \frac{2W(a^2)}{3}) at (x = a); max possible value = (\frac{Wl}{8}) when (a = \frac{l}{2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M_A = \frac{-Wa}{F} (l - a)^2)</td>
<td>Max (-M = M_A) if (a < \frac{l}{2}); max possible value = (-0.148Wl) when (a = \frac{l}{3})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\theta_A = 0) (y_A = 0)</td>
<td>(\text{Max } y = \frac{-2W(l - a)^2a^3}{3EI(l + 2a)^2}) at (x = \frac{2al}{l + 2a}); if (a > \frac{l}{2}); max possible value = (\frac{-W^3}{192EI}) when (x = a = \frac{l}{2})</td>
</tr>
<tr>
<td>1e.</td>
<td>Left end simply supported, right end simply supported</td>
<td>(R_A = \frac{W}{l}(l - a)) (M_A = 0)</td>
<td>(\text{Max } M = R_Aa) at (x = a); max possible value = (\frac{Wl}{4}) when (a = \frac{l}{2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\theta_A = \frac{-Wa}{6EI}(2l - a)(l - a)) (y_A = 0)</td>
<td>Max (y = \frac{-Wa}{3EI} \left(\frac{l^2 - a^2}{3} \right)^{3/2}) (x = l - \left(\frac{l^2 - a^2}{3} \right)^{1/2}); if (a < \frac{l}{2}); max possible value = (\frac{-W^3}{48EI}) at (x = \frac{l}{2}) when (a = \frac{l}{2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_B = \frac{Wa}{l}) (M_B = 0)</td>
<td>Max (\theta = \theta_A) when (a < \frac{l}{2}); max possible value = (-0.0642 \frac{W^2}{EI}) when (a = 0.423l)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\theta_B = \frac{Wa}{6EI}(\hat{y} - a^2)) (y_B = 0)</td>
<td>(\text{Max } y = y_A); max possible value = (\frac{-W^3}{3EI}) when (a = 0)</td>
</tr>
<tr>
<td>1f.</td>
<td>Left end guided, right end simply supported</td>
<td>(R_A = 0) (M_A = W(l - a)) (\theta_A = 0)</td>
<td>(\text{Max } M = M_A) for (0 < x < a); max possible value = (Wl) when (a = 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(y_A = \frac{-W(l - a)}{6EI} \left(2l^2 + 2la - a^2 \right))</td>
<td>Max (\theta = \theta_B); max possible value = (\frac{W^3}{2EI}) when (a = 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_B = W) (M_B = 0)</td>
<td>Max (y = y_A); max possible value = (-\frac{W^3}{3EI}) when (a = 0)</td>
</tr>
</tbody>
</table>
Roccor Analysis on Slit-Tubes

Region 1: Structural Region

Region 2: Low Stiffness due to Global Buckling

Region 3: Further Stiffness Reduction due to Shell Buckling
Spacecraft Structural Testing

Structural Testing
Spacecraft Structural Testing

Sine Sweep: 1/4g input at base, sweep all frequencies to understand dynamic response

Graph:
- **Sweep Number:** 1.00
- **Sweep Rate:** 2.0000 rad/min
- **Compression:** 50%
- **Elapsed Time:** 00:03:19
- **Fundamental:** 70.000 Hz
- **DB RMS:** 455, inyo
- **Remaining Time:** 00:00:00
- **Test Range:** 20.000, 2000.000 Hz
- **Points Per Sweep:** 450

Annotations:
- **WOW!**
- **Excellent Correlation**

Notes:
- **DANDE EDU,** ten months prior to FCR
- **File Information:**
 - **Date:** Mar 11 2008
 - **File:** CU:25G.122
 - **Data Review File:** B: CU:25G.121
 - **Data Preview File:** C: CU:25G.120
 - **A:** DATA 1V
 - **B:** DATA 1V
 - **C:** DATA 1V
Spacecraft Structural Testing

Sine Burst: Simulates a static load. Lasting less than a second, shake at a fixed frequency for a few cycles.
20gs * 1.2 FS = 24Gs

Random Vibration: Simulates elastic and acoustic launch vibrations. Vibrates spectrum of frequencies simultaneously. Usually most significant at natural freq, (drives >100 Hz requirement)
The Future of Spacecraft Structures & Mechanisms
Future of Spacecraft Structures & Mechanisms

• SmallSat Revolution
 – Microsatellite Constellations ($$$)
 – Sophisticated Cubesats (high tech, interplanetary)
 – Bulk of the industry will still be traditional

• Increased use in advanced materials
 – Solid state mechanisms
 – Printed primary structures (metal, plastic, carbon)
Spacecraft Failures

~3.5% of spacecraft on-orbit failures are attributed to the structures system.

100% of spacecraft failures are attributed to systems engineering.
Spacecraft Failures: Structures and Mechanisms

Galileo Spacecraft, Launch 1989
Reached Jupiter in 1995
Spacecraft Failures: Structures and Mechanisms

Glory Spacecraft: Launched 2011
SpaceX: June 28th, 2015
Spacecraft Failures: Structures and Mechanisms

SpaceX: June 28th, 2015
Other examples:

• Contamination, debris
• Material degradation
 – Structural integrity
 – Surface properties
• Ground support equipment
 – Red tag items

Repairs: $135m