Gateway To Space

ASEN 1400

Class #16

Colorado Space Grant Consortium
Today:

- Announcements

- One Minute Reports

Then…

Rocket History (Best Lecture Ever)
Announcements:

- Design Document Rev A/B due today

- Mid Semester Team Evaluation forms next class

- Hardware: All order forms as of yesterday PM, have been ordered. Here today or tomorrow.
One Minute Reports:
https://youtu.be/rBFdoKxIPbE
Design Document
Rev A/B
due today

HW #07
due today

Mid Semester Team Evaluation forms next class

Announcements:

FREE CANDY
Next Thursday...

Hands-On Day in Class with Chris and CAs
Next Tuesday...

Launch Vehicles
(4th best lecture ever)
Questions?

Colorado Space Grant Consortium
Where does it all start?
Where does it all start?
- When I was in high school, I visited CU and saw these type of pictures in the lobby
This is the point the class where I will begin frustrate more of you. No spoon feeding, you must think on your own. Will help as long as it is scheduled and not at the last minute.
Proposals:
Proposals:
Today:

Journey Through Rocket History
Introduction:

- Standing on the shoulders of giants

- In your careers, remember how you got there
What is a Rocket?

- A reaction engine

- Propellant in a chamber, accelerated to high speed and expelled at one end through a nozzle

- Newton’s 3rd Law
What is a Rocket?

- Is a jet engine a rocket?
What is a Rocket?

- Is a balloon a rocket?
What is a Rocket?
What is a Rocket?
Demo:

In class Demo!!!
Early History:

- **China, 1232**
 - Chinese history in the use of primitive rockets spans centuries
 - Armies fired flaming rockets at enemies
 - **Battle of Kai-fung-fu**, rockets launched could be heard for 15 miles when launched and upon impact devastated everything in all directions for 2,000 feet
 - Carried incendiary materials and iron shrapnel
Early History:

- **Battle of Kai-fung-fu**, rockets launched could be heard for 15 miles when launched and upon impact devastated everything in all directions for 2,000 feet

- Carried incendiary materials and iron shrapnel
Early History:

- **British, 1814**
 - In 1799, the British attacked Tippoo Sultan’s Mogol forces in India
 - British forces were bombed by rockets 5,000 rocketeers
 - Losses were severe, but the British learned something
 - British developed a rocket program
Early History:

- British, 1814
 - Used this program on United States
 - Bombed Baltimore for 25 hours
 - Francis Scott Key wrote poem

“...and the rockets red glare...gave proof through the night that our flag was still there...”
• Confederate States of America, 1864
 - 12 foot long rocket
 - 10 pounds of gunpowder
 - Launched from Richmond, Virginia
 - Intended to be first ballistic missile
 - Target was Washington, D.C.
 - Brass case marked C.S.A.
 - Roar out of sight
 - Never found
Introduction:

- What’s the point?

- Rockets = weapons

- No **real thought** on how they worked or functioned

- No control, **just light it** and hope it doesn’t return

- **Someone** changed all that…
Jules Verne:

- 1865, published, “From the Earth to the Moon”
- He changed the thinking of rockets
- He saw them as method of travel
- He presented the world with a glimpse of the future
- Kennedy Space Center and the math
Jules Verne:
Jules Verne:
Verne:

- Deeply affected the course of rockets

- How could one book have such an impact?

- No Book, No Moon

- Also published Time travel…Makes you wonder
Konstantin Tsiolkovsky:

- Born 1857 in Russia
- Deaf at age 10, home schooled
- Heavily influenced by Verne
- School teacher
- Was considered mad at times but now monuments stand in his honor
Konstantin Tsiolkovsky:

- He published over 400 papers (90 on space)

- Talked about multistage rockets, liquid rockets

- Space Elevator and...
The Rocket Equation:

\[\Delta v = v_e \ln \left(\frac{m_0}{m_f} \right) \]

where \(u \) is the final rocket velocity, \(v \) is the velocity of the exhaust gases, \(M_0 \) and \(M \) are the starting and ending masses of the rocket, and \(u_0 \) is the initial rocket velocity prior to the fuel burn. This equation was published by Tsiolkovsky in 1903.
Konstantin Tsiolkovsky:

- We all have our mentors and those that inspire us

- Dimitri Mendeleyev

- Invented the Periodic Table

- He inspired Tsiolkovsky

- Largest crater on the moon is named after him
Periodic Table

<table>
<thead>
<tr>
<th>Group</th>
<th>Periodic Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The different thicknesses of the sloping lines represent different degrees of similarity between A-Groups and B-Groups. Thus IVA and IB are very closely related, but IA and IB only slightly. The scale at the bottom of the table gives the most important valence (valence numbers) for each element. A valence number in excess of +3 is usually shown only when the given element is in association with another (commonly oxygen); Mn, for example, in permanganate-ion, MnO₇⁻, has a valence number of +7.</td>
</tr>
<tr>
<td>1</td>
<td>VIA VIA VA</td>
</tr>
<tr>
<td>2</td>
<td>VIA VIA VA</td>
</tr>
<tr>
<td>3</td>
<td>VIA VIA VA</td>
</tr>
<tr>
<td>4</td>
<td>VIA VIA VA</td>
</tr>
<tr>
<td>5</td>
<td>VIA VIA VA</td>
</tr>
<tr>
<td>6</td>
<td>VIA VIA VA</td>
</tr>
<tr>
<td>7</td>
<td>VIA VIA VA</td>
</tr>
<tr>
<td>8</td>
<td>VIA VIA VA</td>
</tr>
<tr>
<td>9</td>
<td>VIA VIA VA</td>
</tr>
</tbody>
</table>

Elements

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Number</th>
<th>Atomic Weight</th>
<th>Electron Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>2</td>
<td>4.003</td>
<td>K</td>
</tr>
<tr>
<td>Ne</td>
<td>10</td>
<td>20.183</td>
<td>K</td>
</tr>
<tr>
<td>Mg</td>
<td>12</td>
<td>24.31</td>
<td>K</td>
</tr>
<tr>
<td>Mn</td>
<td>25</td>
<td>54.94</td>
<td>K</td>
</tr>
<tr>
<td>Fe</td>
<td>26</td>
<td>55.85</td>
<td>K</td>
</tr>
<tr>
<td>Co</td>
<td>27</td>
<td>58.93</td>
<td>K</td>
</tr>
<tr>
<td>Ni</td>
<td>28</td>
<td>58.69</td>
<td>K</td>
</tr>
<tr>
<td>Cu</td>
<td>29</td>
<td>63.55</td>
<td>K</td>
</tr>
<tr>
<td>Zn</td>
<td>30</td>
<td>65.41</td>
<td>K</td>
</tr>
<tr>
<td>Ga</td>
<td>31</td>
<td>70.92</td>
<td>K</td>
</tr>
<tr>
<td>As</td>
<td>33</td>
<td>74.92</td>
<td>K</td>
</tr>
<tr>
<td>Br</td>
<td>35</td>
<td>79.90</td>
<td>K</td>
</tr>
<tr>
<td>K</td>
<td>39</td>
<td>39.10</td>
<td>K</td>
</tr>
<tr>
<td>Ti</td>
<td>22</td>
<td>47.88</td>
<td>K</td>
</tr>
<tr>
<td>Mn</td>
<td>25</td>
<td>54.94</td>
<td>K</td>
</tr>
<tr>
<td>Fe</td>
<td>26</td>
<td>55.85</td>
<td>K</td>
</tr>
<tr>
<td>Co</td>
<td>27</td>
<td>58.93</td>
<td>K</td>
</tr>
<tr>
<td>Ni</td>
<td>28</td>
<td>58.69</td>
<td>K</td>
</tr>
<tr>
<td>Cu</td>
<td>29</td>
<td>63.55</td>
<td>K</td>
</tr>
<tr>
<td>Zn</td>
<td>30</td>
<td>65.41</td>
<td>K</td>
</tr>
<tr>
<td>Ga</td>
<td>31</td>
<td>70.92</td>
<td>K</td>
</tr>
<tr>
<td>As</td>
<td>33</td>
<td>74.92</td>
<td>K</td>
</tr>
<tr>
<td>Br</td>
<td>35</td>
<td>79.90</td>
<td>K</td>
</tr>
</tbody>
</table>

Light Metals

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Number</th>
<th>Atomic Weight</th>
<th>Electron Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>39</td>
<td>39.10</td>
<td>K</td>
</tr>
<tr>
<td>Ti</td>
<td>22</td>
<td>47.88</td>
<td>K</td>
</tr>
<tr>
<td>Mn</td>
<td>25</td>
<td>54.94</td>
<td>K</td>
</tr>
<tr>
<td>Fe</td>
<td>26</td>
<td>55.85</td>
<td>K</td>
</tr>
<tr>
<td>Co</td>
<td>27</td>
<td>58.93</td>
<td>K</td>
</tr>
<tr>
<td>Ni</td>
<td>28</td>
<td>58.69</td>
<td>K</td>
</tr>
<tr>
<td>Cu</td>
<td>29</td>
<td>63.55</td>
<td>K</td>
</tr>
<tr>
<td>Zn</td>
<td>30</td>
<td>65.41</td>
<td>K</td>
</tr>
<tr>
<td>Ga</td>
<td>31</td>
<td>70.92</td>
<td>K</td>
</tr>
<tr>
<td>As</td>
<td>33</td>
<td>74.92</td>
<td>K</td>
</tr>
<tr>
<td>Br</td>
<td>35</td>
<td>79.90</td>
<td>K</td>
</tr>
</tbody>
</table>

Heavy Metals

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Number</th>
<th>Atomic Weight</th>
<th>Electron Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>39</td>
<td>39.10</td>
<td>K</td>
</tr>
<tr>
<td>Ti</td>
<td>22</td>
<td>47.88</td>
<td>K</td>
</tr>
<tr>
<td>Mn</td>
<td>25</td>
<td>54.94</td>
<td>K</td>
</tr>
<tr>
<td>Fe</td>
<td>26</td>
<td>55.85</td>
<td>K</td>
</tr>
<tr>
<td>Co</td>
<td>27</td>
<td>58.93</td>
<td>K</td>
</tr>
<tr>
<td>Ni</td>
<td>28</td>
<td>58.69</td>
<td>K</td>
</tr>
<tr>
<td>Cu</td>
<td>29</td>
<td>63.55</td>
<td>K</td>
</tr>
<tr>
<td>Zn</td>
<td>30</td>
<td>65.41</td>
<td>K</td>
</tr>
<tr>
<td>Ga</td>
<td>31</td>
<td>70.92</td>
<td>K</td>
</tr>
<tr>
<td>As</td>
<td>33</td>
<td>74.92</td>
<td>K</td>
</tr>
<tr>
<td>Br</td>
<td>35</td>
<td>79.90</td>
<td>K</td>
</tr>
</tbody>
</table>

Inert Gases

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Number</th>
<th>Atomic Weight</th>
<th>Electron Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>39</td>
<td>39.10</td>
<td>K</td>
</tr>
<tr>
<td>Ti</td>
<td>22</td>
<td>47.88</td>
<td>K</td>
</tr>
<tr>
<td>Mn</td>
<td>25</td>
<td>54.94</td>
<td>K</td>
</tr>
<tr>
<td>Fe</td>
<td>26</td>
<td>55.85</td>
<td>K</td>
</tr>
<tr>
<td>Co</td>
<td>27</td>
<td>58.93</td>
<td>K</td>
</tr>
<tr>
<td>Ni</td>
<td>28</td>
<td>58.69</td>
<td>K</td>
</tr>
<tr>
<td>Cu</td>
<td>29</td>
<td>63.55</td>
<td>K</td>
</tr>
<tr>
<td>Zn</td>
<td>30</td>
<td>65.41</td>
<td>K</td>
</tr>
<tr>
<td>Ga</td>
<td>31</td>
<td>70.92</td>
<td>K</td>
</tr>
<tr>
<td>As</td>
<td>33</td>
<td>74.92</td>
<td>K</td>
</tr>
<tr>
<td>Br</td>
<td>35</td>
<td>79.90</td>
<td>K</td>
</tr>
</tbody>
</table>

Non-Metals

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Number</th>
<th>Atomic Weight</th>
<th>Electron Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>39</td>
<td>39.10</td>
<td>K</td>
</tr>
<tr>
<td>Ti</td>
<td>22</td>
<td>47.88</td>
<td>K</td>
</tr>
<tr>
<td>Mn</td>
<td>25</td>
<td>54.94</td>
<td>K</td>
</tr>
<tr>
<td>Fe</td>
<td>26</td>
<td>55.85</td>
<td>K</td>
</tr>
<tr>
<td>Co</td>
<td>27</td>
<td>58.93</td>
<td>K</td>
</tr>
<tr>
<td>Ni</td>
<td>28</td>
<td>58.69</td>
<td>K</td>
</tr>
<tr>
<td>Cu</td>
<td>29</td>
<td>63.55</td>
<td>K</td>
</tr>
<tr>
<td>Zn</td>
<td>30</td>
<td>65.41</td>
<td>K</td>
</tr>
<tr>
<td>Ga</td>
<td>31</td>
<td>70.92</td>
<td>K</td>
</tr>
<tr>
<td>As</td>
<td>33</td>
<td>74.92</td>
<td>K</td>
</tr>
<tr>
<td>Br</td>
<td>35</td>
<td>79.90</td>
<td>K</td>
</tr>
</tbody>
</table>

The Rare Earth Metals

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Number</th>
<th>Atomic Weight</th>
<th>Electron Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>39</td>
<td>39.10</td>
<td>K</td>
</tr>
<tr>
<td>Ti</td>
<td>22</td>
<td>47.88</td>
<td>K</td>
</tr>
<tr>
<td>Mn</td>
<td>25</td>
<td>54.94</td>
<td>K</td>
</tr>
<tr>
<td>Fe</td>
<td>26</td>
<td>55.85</td>
<td>K</td>
</tr>
<tr>
<td>Co</td>
<td>27</td>
<td>58.93</td>
<td>K</td>
</tr>
<tr>
<td>Ni</td>
<td>28</td>
<td>58.69</td>
<td>K</td>
</tr>
<tr>
<td>Cu</td>
<td>29</td>
<td>63.55</td>
<td>K</td>
</tr>
<tr>
<td>Zn</td>
<td>30</td>
<td>65.41</td>
<td>K</td>
</tr>
<tr>
<td>Ga</td>
<td>31</td>
<td>70.92</td>
<td>K</td>
</tr>
<tr>
<td>As</td>
<td>33</td>
<td>74.92</td>
<td>K</td>
</tr>
<tr>
<td>Br</td>
<td>35</td>
<td>79.90</td>
<td>K</td>
</tr>
</tbody>
</table>

THE RARE EARTH METALS ARE:

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Number</th>
<th>Atomic Weight</th>
<th>Electron Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>39</td>
<td>39.10</td>
<td>K</td>
</tr>
<tr>
<td>Ti</td>
<td>22</td>
<td>47.88</td>
<td>K</td>
</tr>
<tr>
<td>Mn</td>
<td>25</td>
<td>54.94</td>
<td>K</td>
</tr>
<tr>
<td>Fe</td>
<td>26</td>
<td>55.85</td>
<td>K</td>
</tr>
<tr>
<td>Co</td>
<td>27</td>
<td>58.93</td>
<td>K</td>
</tr>
<tr>
<td>Ni</td>
<td>28</td>
<td>58.69</td>
<td>K</td>
</tr>
<tr>
<td>Cu</td>
<td>29</td>
<td>63.55</td>
<td>K</td>
</tr>
<tr>
<td>Zn</td>
<td>30</td>
<td>65.41</td>
<td>K</td>
</tr>
<tr>
<td>Ga</td>
<td>31</td>
<td>70.92</td>
<td>K</td>
</tr>
<tr>
<td>As</td>
<td>33</td>
<td>74.92</td>
<td>K</td>
</tr>
<tr>
<td>Br</td>
<td>35</td>
<td>79.90</td>
<td>K</td>
</tr>
</tbody>
</table>

Note: This table includes the periodic table with atomic numbers, atomic weights, and electron configurations for elements from hydrogen (H) to radon (Rn). It also highlights the rare earth metals.
Konstantin Tsiolkovsky:

Tsiolkovsky Rocket Designs
Konstantin Tsiolkovsky:
Konstantin Tsiolkovsky:

“The Earth is the cradle of the mind, but we cannot live forever in a cradle”

Sort of the Carl Sagan or Dr. Tyson of his age
In 1926 Tsiolkovsky defined his "Plan of Space Exploration," consisting of sixteen steps for human expansion into space:

1) Creation of rocket airplanes with wings.
2) Progressively increasing the speed and altitude of these airplanes.
3) Production of real rockets—without wings.
4) Ability to land on the surface of the sea.
5) Reaching escape velocity (about 8 Km/second), and the first flight into Earth orbit.
6) Lengthening rocket flight times in space.
7) Experimental use of plants to make an artificial atmosphere in spaceships.
8) Using pressurized space suits for activity outside of spaceships.
9) Making orbiting greenhouses for plants.
10) Constructing large orbital habitats around the Earth.
11) Using solar radiation to grow food, to heat space quarters, and for transport throughout Solar System.
12) Colonization of the asteroid belt.
13) Colonization of the entire Solar System and beyond.
14) Achievement of individual and social perfection.
15) Overcrowding of the Solar System and the colonization of the Milky Way (the Galaxy).
16) The Sun begins to die and the people remaining in the Solar System's population go to other suns.
Konstantin Tsiolkovsky:

- Star Trek named a ship after him

- **USS Tsiolkovsky**, NCC-53911

- 2nd Episode, season 1
 “The Naked Now”

- Oberth Class
Earth

limit of balloon, 20 miles

limit of atmosphere, 200 miles

 discrepancies

Moon
Robert Goddard:

- Born 1882 in USA

- Influenced by Verne

- 1912, he first explored mathematically the practicality of using rocket propulsion to reach high altitudes and even the moon

- Nearly died of TB in 1913

- First proved, by actual static test, that a rocket will work in a vacuum, that it needs no air to push against

- 1914 he received 1st U.S. patent in idea of multi-stage rocket
Goddard:

- He too, realized liquid fuels were better and more controlled
- He actually launched the first liquid rocket in 1926

2.5 sec flight, 41 ft high, 60 mph, and weighed 6 lbs
Goddard:

- He wrote a paper to the Smithsonian asking for $5,000

- To study the atmosphere higher than a balloon will go you must use rockets
Goddard:

- Then WWI, used money to develop bazooka
Out of money and frustrated

Then one fine day

Charles Lindberg and Daniel Guggenheim showed up

Gave him $50,000

He moved to Roswell, New Mexico
Goddard:

- 1930, 11 ft, 35 lb, rocket 7,500 feet 560 mph

- He stated that rockets would be the way we would leave the Earth and even fly to the Moon and Mars

- **New York Times** ridiculed him in article, that he didn’t have the knowledge of a high school student

- This made a Goddard a hermit, and worked only with a small group of people
Goddard:

- 1937, 16 ft, 9,000 ft high
Goddard:
Goddard:

1932, First used vanes in the rocket motor blast for guidance

1932, First developed gyro control apparatus for rocket flight

First developed pumps suitable for rocket fuels;

1937, First launched successfully a rocket with a motor pivoted on gimbals under the influence of a & gyro mechanism

NASA’s Goddard Space Flight Center

…The Times printed a retraction as Apollo 11 landed on the Moon.

A Correction

On Jan. 13, 1920, “Topics of The Times,” an editorial-page feature of The New York Times, dismissed the notion that a rocket could function in a vacuum and commented on the ideas of Robert H. Goddard, the rocket pioneer, as follows:

“That Professor Goddard, with his ‘chair’ in Clark College and the countenancing of the Smithsonian Institution, does not know the relation of action to reaction, and of the need to have something better than a vacuum against which to react—to say that would be absurd. Of course he only seems to lack the knowledge ladled out daily in high schools.”

Further investigation and experimentation have confirmed the findings of Isaac Newton in the 17th Century and it is now definitely established that a rocket can function in a vacuum as well as in an atmosphere. The Times regrets the error.
Oberth:

- Herman Oberth, 1894-1989
- Inspired by Verne
- Mother gave him a copy when he was 11 and memorized it
- At 14, he had a design for a rocket in space
- His doctoral dissertation was rejected, said to be worthless “The Rocket in Planetary Space”
Oberth:

- His wife gave him money to publish it

- Was a commercial success

- Formed a rocket society or club and they believed they could build a rocket to go to the moon
Oberth:

- 1929 static firing of his first liquid-fueled rocket motor and took on assistant
von Braun:

Wernher von Braun, 1912 - 1977
- Age 13
- Strapped 6 skyrockets to a red wagon
von Braun:

Wernher von Braun, 1912 - 1977
- Launched the wagon five blocks
- Exploded in town
- Dad thought he was going to be a safecracker
- He came from a very upper class family
- His dad transferred him to a different school
- Oberth was teaching at the college the Von Braun was attending
- He received a BS in Aeronautical Engineering, PhD in Physics

- Age 24
- Director of Germany’s Military Rocket Program
von Braun:

- Von Braun’s passion in life was to go to other worlds

- He never thought the war would lead to killing people with rockets

- He was very depressed when it happened
von Braun:

- When the Nazis were about to lose the war, Hitler ordered von Braun and his entire team of 10,000 to be executed

- They decided to surrender to the US forces

- They traveled at night not to get bombed by US forces
von Braun:

- Ran to the US forces with little white flags
von Braun:

- Start of the Cold War

War Department
Bureau of Public Relations
Press Branch
Tel. RE 6500
Brns. 3425 and 4860

October 1, 1945

IMMEDIATE RELEASE

OUTSTANDING GERMAN SCIENTISTS BEING BROUGHT TO U.S.

The Secretary of War has approved a project whereby certain understanding German scientists and technicians are being brought to this country to ensure that we take full advantage of those significant developments which are deemed vital to our national security.

Interrogation and examination of documents, equipments and facilities in the aggregate are but one means of exploiting German progress in science and technology. In order that this country may benefit fully from this resource a number of carefully selected scientists and technologists are being brought to the United States on a voluntary basis. These individuals have been chosen from those fields where German progress is of significant importance to us and in which these specialists have played a dominant role.

Throughout their temporary stay in the United States these German scientists and technical experts will be under the supervision of the War Department but will be utilized for appropriate military projects of the Army and Navy.

END

DISTRIBUTION: Am, Af, E, De, Da, En, 4:30 P.M.
von Braun:

- He helped the US launch its first satellite

- Also in this picture is William Pickering, and Mr. James Van Allen
1953
In the 1940’s and 50’s, these women were JPL’s “computers”, doing flight path calculations for rockets and compiling experimental data, as well as graphing performance data from JPL’s wind tunnels.
The Women who Power NASA’s New Horizons Mission to Pluto

Women make up approximately 25 percent of the New Horizons flyby team. The female team members were photographed at Johns Hopkins University Applied Physics Laboratory on July 11, 2015, just three days before the spacecraft’s closest approach to Pluto. Kneeling from left to right: Amy Shira Teitel, Cindy Conrad, Sarah Hamilton, Allisa Earle, Leslie Young, Melissa Jones, Katie Bechtold, Becca Seplan, Kelsi Singer, Amanda Zangari, Coralie Jackman, Helen Hart. Standing, from left to right: Fran Bagenal, Ann Harch, Jillian Redfern, Tiffany Finley, Heather Elliot, Nicole Martin, Yanping Guo, Cathy Olkin, Valerie Mallder, Rayna Tedford, Silvia Protopapa, Martha Kusterer, Kim Ennico, Ann Verbiscer, Bonnie Buratti, Sarah Bucior, Veronica Bray, Emma Birath, Carly Howett, Alice Bowman. Not pictured: Priya Dharmavaram, Sarah Flanigan, Debi Rose, Sheila Zurvalec, Adriana Ocampo, Jo-Anne Kierzkowsk Sheila Zurvalec.

Credits: SwR/ JHUAPL
von Braun:

- Work got slim for a while…
von Braun:

- Then the Russians launched the first man into space...
von Braun:
von Braun:
von Braun:
von Braun:

- He once said,

“that it is man’s nature to explore, to move on, and we when we stop doing that we are no longer human.”
von Braun:
von Braun:
Benefits:
You:

• **U.S.A., 2025**
 - You discover a new direction in rocketry
 - You propose a engine that weighs less than a car, can run on saltwater, is powered by an Arduino and it can lift 10 Saturn V rocket payloads to Mars
 - The Denver Post reported that you were “you one Fruit Loop short of a full box.”
 - Aviation News followed with “your wheel is spinning but the hamsters not home.”
 - Time Magazine continued with, “Your antenna isn’t picking up all the channels”
 - All voted you person of the century when you land on Mars in 2030 after launching from I-25 and I-70 in your personal launch vehicle.
Falcon 1:

Falcon 1 Flight 4 - Highlights
09/28/2008
A short compilation of highlights from flight 4. Stay tuned as more media will be added very soon.

Share this video: