Monarch 4 “MapSat”
Conceptual Design Review

Old Dominion University
Aaron Easter, Chinedu Okafo, Connor Hetman, Evan Johnson, Isabel Valero, Jack Drescher, Jacob Greenberg, Jamar Dover, Josh Doberstyzn, Rita Meraz, Shane Phipps, Samuel Jensen, Dr. Dmitri Popescu

09/29/2019
CoDR Presentation Contents

• Section 1: Mission Overview
 – Mission Overview
 – Theory and Concepts
 – Mission Requirements (top level)
 – Expected Results
 – Concept of Operations

• Section 2: Conceptual Design Overview
 – Design Overview
 – Functional Block Diagrams
 – Payload Layout
 – Ports (if applicable)
 – Shared Can Logistics (if applicable)
CoDR Presentation Contents

• Section 3: Management
 – Team Organization
 – Schedule
 – Budget
 – Mentors (Faculty, industry)
 – Team Contact Matrix
 – Team Availability Matrix

• Section 4: Conclusions
 – Risks and Worries
 – Conclusion
Mission Overview

Samuel Jensen, Jacob Greenberg
• Mission Statement
 – The goal of Monarch 4 is to measure radio noise/interference during flight using a software defined radio while also collecting telemetry data to create a “noise map” post flight.
 – Experiment with electroplating material to prevent passage of gamma/beta radiation to a system.
Mission Objective

- Objectives:
 - Take accurate measurements of different radio bands during flight using a USRP and specialized antenna.
 - Telemetry data collected during flight will be used to make a model of the radio noise experienced during the flight using STK.
 - Build a simple device for blocking gamma/beta radiation using an electroplating process.
Mission Objectives

• Requirements:
 - Geiger Tubes
 - Sensors for Telemetry
 - Computing Systems
 - USRP and Antenna

• Minimum Success Statement:
 - Measurements taken of various radio bands during flight
 - Considerable change in gamma/beta propagation through electroplated material
Mission Overview: Theory and Concepts

- **Properties of EM Waves**
 - Can travel through empty space
 - Speed of light is always constant
 - Different types: radio, micro, IR, visible light, UV, X-rays, gamma
Mission Overview: Theory and Concepts

- Measuring Electromagnetic Waves
 - Using a software defined radio to “listen”
 - Scanning radio bands

- Measurable Environment
 - Earth originating radio bands (Terrestrial)
 - Common space communication bands
 - Cosmic noise noise present
Mission Overview: Theory and Concepts

• **Known Research**
 - Different materials filter EM radiation.
 - Electromagnetic Interference (EMI).
 - Effects of EMI on electrical systems.

• **EMI Qualification in Space**
 - Little amounts of research available regarding the RockSat payload.
 - Research could possibly be used for Small Sat and further RockSat projects.
Mission Overview: Expected Results

- **Expected Results**
 - A wide spectrum of EMF ranges with the elimination or reduction in the magnitude of the filtered waves.
 - Although we will be spinning, we hope to estimate the sources of such radiation by modeling the flight using Systems Tool Kit.
 - IMU data, such as a gyroscope, accelerometer, etc, will be a good fit to make the basics of the flight model.
 - Large amounts of terrestrial electromagnetic radiation on the ground.
 - Large amounts of space faring electromagnetic radiation after exiting the atmosphere.
CONOPS

<table>
<thead>
<tr>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
</table>
| Launch \[t=0\] | Payload power up
Data collection begins
Terrestrial signals present |
| Exiting Earth’s atmosphere ≈ +100km | Expected increase in EMF bombardment
Reduction in Terrestrial Signals |
| Apogee \[t = 2.8 \text{ min}\] | Highest measurements of EMF for space
farin bands |
| Re-entering Earth’s atmosphere ≈ -100km | Rapid Decline in EMF
Increase in terrestrial bands |
| Splash Down \[t = 15 \text{ min}\] | Significant decrease in EMF detection
Only terrestrial signals present |
Design Overview

Shane Phipps, Jack Drescher, Connor Hetman, Aaron Easter, Samuel Jensen
Design Overview

- **Structural Requirements**
 - **Material:**
 - Aluminum plate connectors (stand offs)
 - 3D Printed chassis components
 - Makrolon Plates
 - **Design Considerations**
 - Maximize experimentation area

- **Plate Design**
 - **Layer Cake Method**
 - Two plates stacked
Design Overview

• Centralized Component Layout
 - Mitigate mass displacement issues
 - Organize payload
 - Simplify Wiring

• Sensor Layout Considerations
 - “Experiment Bay” sitting below main electronics
 - Houses all experimental equipment (acc. gyr. geiger)
Design Overview

• Electrical Requirements
 - Power Systems
 - Computing Systems (Arduino and Ras. Pi)
 - Storage systems (Possibly for both)
 - USRP (Software Defined Radio)

• Telemetry Requirements
 - 3 Accelerometers
 - 1 Gyroscope
 - 2 Gamma Ray detectors
Electrical FBD

- Accelerometer 3
- Accelerometer 2
- Accelerometer 1
- Gyroscope
- IMU
- Microcontroller
- Raspberry Pi
- USRP
- Antenna
- Port
- Storage 1
- Storage 2
- Flash Memory
- Power
- G-Switch
- RBF (Wallops)
- Shield
- Gamma 1
- Gamma 2

Red lines indicate Power, blue lines indicate Data.
Mechanical FBD

- Geiger Tube Setup
- PCB/USRP Stack
- Telemetry Sensor Stack

Connected to each other with standoffs

Mounts to base of canister

Gamma/Beta Blocking Material
Design Overview: Payload Layout

Current CAD Models

- 2 inch spacing between the two plates
- Sensor Placement and Electrical housing (bottom plate)
- Standoff supporting structures
Design Overview: Payload Layout

Top Plate Design

- Spaced out electronics for better centralized mass
- Drop Wiring points for sensor placement
Design Overview: Ports

- **Port Request:** Radio Port
- **Use:** Radio Receiving for the USRP
 - Will use specialized antenna
- **Connector Type:** Dual SMA
 - Cable routing to payload through the dedicated wiring routes from COSGC
 - Connects directly to payload USRP through an interfacing board

- **Predicted mass**
 - Expect to use 2 plates
 - unknown mass expectations (past experience being researched)

- **Predicted volume**
 - Half canister design

- **Activation Methods**
 - G-Switch

- **Special requests**
 - Radio Port
Design Overview: Shared Can Logistics

Canister Sharing: Need Pairing w/ Partner Collaboration:

- Holding a short meeting after CDR to ensure proper requirements are met.
- Second meeting during February/March timeframe to update on any changes.
- Email/Call as general collab. method
Project Management

Samuel Jensen, Josh Dobersztyn
Management
Management

• Preliminary schedule for the semester

<table>
<thead>
<tr>
<th>Activity</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Review Planning</td>
<td>Now - November</td>
</tr>
<tr>
<td>USRP Sourcing, Antenna Design</td>
<td>Now - December</td>
</tr>
<tr>
<td>Project Task List Overview</td>
<td>Now - December/January</td>
</tr>
<tr>
<td>Design Drawings/Power Budget</td>
<td>Late October - December</td>
</tr>
<tr>
<td>Critical Design Review</td>
<td>November - December</td>
</tr>
</tbody>
</table>
Management

• Monetary budget
 – ESPEX Research Funding (ODU Research Fd.)
 – VSGC Project Funding
• Team mentors (industry, faculty)?
 – Dr. Popescu (Electrical Engineering Faculty)
 – Jason Harris (EE PhD Student)
Team Contact Matrix

DropBox Access:
- Samuel Jensen
- Dr. Popescu

<table>
<thead>
<tr>
<th>Team Member</th>
<th>Role/Position</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samuel Jensen</td>
<td>Project Lead</td>
<td>sjens001@odu.edu</td>
</tr>
<tr>
<td>Dr. Dimitri Popescu</td>
<td>Advisor</td>
<td>dpopescu@odu.edu</td>
</tr>
<tr>
<td>Jacob Greenberg</td>
<td>Science Investigator</td>
<td>igree030@odu.edu</td>
</tr>
<tr>
<td>Rita Meraz</td>
<td>Science Investigator</td>
<td>rmera001@odu.edu</td>
</tr>
<tr>
<td>Shane Phipps</td>
<td>Mechanical Lead</td>
<td>sphip001@odu.edu</td>
</tr>
<tr>
<td>Jack Drescher</td>
<td>Mechanical Lead</td>
<td>jdress004@odu.edu</td>
</tr>
<tr>
<td>Izzy Valero</td>
<td>Integration Lead</td>
<td>ivale002@odu.edu</td>
</tr>
<tr>
<td>Aaron Easter</td>
<td>Electrical Lead</td>
<td>aeast003@odu.edu</td>
</tr>
<tr>
<td>Chinedu Okafo</td>
<td></td>
<td>cokaf001@odu.edu</td>
</tr>
<tr>
<td>Connor Hetman</td>
<td></td>
<td>chetm001@odu.edu</td>
</tr>
<tr>
<td>Evan Johnson</td>
<td></td>
<td>ejohn027@odu.edu</td>
</tr>
<tr>
<td>Jamar Dover</td>
<td></td>
<td>jdove001@odu.edu</td>
</tr>
</tbody>
</table>

Document Changes: No expected change
Team Availability Matrix

<table>
<thead>
<tr>
<th>Time</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:00 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00 AM</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00 PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00 PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:00 PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:00 PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00 PM</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>5:00 PM</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: Times in MDT
Risks and Worries

Main Project Worries:

• Antenna Design
 – Working to multiple frequencies

• Power Draw of USRP and Ras. PI
 – No active charging methods
 – Large W/hr consumption

• USRP
 – Obtaining a usable USRP for mission
Conclusion

Mission:

• The goal of Monarch 4 is to measure radio noise/interference during flight using a software defined radio while also collecting telemetry data to great a “noise map” post flight.
• Experiment with electroplating material to prevent passage of gamma/beta radiation to a system.

Project Plan:

• Define key objectives, work backwards from there.
 – Start to finish task list