RockSat-X @ Virginia Tech
Conceptual Design Review

Virginia Tech
Seth Austin and John Mulvaney
October 15, 2015
CoDR Presentation Content

• Section 1: Mission Overview
 – Mission Statement
 – Mission Objectives
 – Theory and Concepts
 – Concept of Operations
 – Expected Results

• Section 2: Design Overview
 – Science Design
 – Engineering Design
 – Functional Block Diagram
 – Payload Layout (sketches)
 – RockSat-X User’s Guide Compliance
CoDR Presentation Content

- Section 3: Management
 - Team Organization
 - Schedule
 - Budget
 - Mentors (Faculty, industry)
 - Risks/Worries
 - Contact and Availability Matrices

- Section 4: Conclusions
Mission Overview: Mission Statement

• To demonstrate the compatibility of a software defined radio (SDR) unit on different communication protocols and the survivability of the components on a sounding rocket flight

• We expect to prove the utility of software defined radio for satellites and its compatibility with SGLS and USN protocols

• The Air Force can use this to free up SGLS network by using different communication protocol such as USN

• This technology can increase the interoperability of satellite communications and enable a low cost ($15K) C2 RF transceiver for Class D missions
Mission Overview: Mission Objectives

- Modify an existing software defined radio unit to survive the expected loads of launch and reentry

- Successfully transmit and receive via SGLS and USN protocols between payload and ground station

- Complete detailed testing and launch operations using modular ground station interface (at Space@VT and/or Wallops)

- Provide design recommendations to Orbital ATK CAD team to modify ETTUS design to include RS422 interface

- Demonstrate tracking capability (through doppler shift) of SDR when compared with GPS telemetry
Mission Overview: Theory and Concepts

• Small satellites are becoming more and more prevalent in industry - all need tracking/communication capability

• The government would like to avoid CubeSats overcrowding their communications networks

• Having the ability to switch between networks would allow small satellites to “fit-in” their communication where bandwidth is available
Example #2 ConOps

1. Launch
 Telemetry/GPS begins
 SDR begins
 Transmission (?)
2. Launch to Apogee
 Telemetry/GPS continues
 SDR transmission continues
 (?)
3. Apogee
 Nose cone separation
 Skin separation
 De-spin to TBD rate
 Telemetry/GPS continues
 Transmission between SGLS and USN to ground station
4. Descent
 Telemetry/GPS continues
5. Chute Deploy
 Telemetry/GPS continues
6. Landing
 Telemetry/GPS terminates
 Payloads recovered
Mission Overview: Expected Results

- Successful communication/command of tasks between the spacecraft and ground (potentially an image or other flight data)

- Observation of a doppler shift in a standard waveform signal from which tracking can be compared to GPS
Design Overview: Science Design

• Instrumentation
 – Ground stations will record whether or not they receive signal from payload
 • Mobile ground station at Wallops
 • Virginia Tech ground station
 – Payload will record whether or not it receives signal from ground stations
 • SD card used to store data

• Payload and ground station will record transmit/receive commands and protocol changes
Design Overview: Engineering Design

• Structure
 – Housing protects payload from space environment, reentry, and splashdown
 – Structure will be designed to protect sensitive electronics from launch and reentry loads
 – Possibility of antenna deployment if needed
• Power
 – Electronics will be powered by NASA’s batteries
• Electronics
 – Software defined radio platform - ETTUS
 • Modify to include RS422 interface
 – 5W S-Band power amplifier
 – Data storage with SD card
• Software must be developed to handle data, switch protocols, process transmit/receive commands
Design Overview: Engineering Design

• Subsystem notes
 – No current heritage elements
 – Payload is very technology dependent

• Testing plans
 – Testing with a SGLS/USN compatible ground modem
 – Radiation testing for single event latchup
We currently do not have a functional block diagram as we are unsure of the specific electrical requirements. This will hopefully be provided next week.
Design Overview: RockSat-X User’s Guide Compliance

- Mass estimate - will not exceed constraint
- No expectation of exceeding allotted space
- Possibility of antenna deployment
- Currently unsure of electronics requirements including ADC lines, Async or Parallel, and timer events. Special accommodation not expected
- CG requirement will be met
- RF - will be transmitting and receiving
- All team members US citizens
Management: Team Organization

Faculty Advisor:
Dr. Kevin Shinpaugh
kashin@vbi.vt.edu

Team Sponsors
Virginia Tech SEC

Team Leaders:
Sebastian Welsh
welshs16@vt.edu
John Mulvaney
Johnwm1@vt.edu

Seniors
Seth Austin
Alex Dixon
Ryan Ligon
Kyle Simmons

Juniors
Ben Gingras
Genevieve Gural
Emma Manchester
Ethan Ohriner
Sean Roberts

Sophomores
Tony DeFilippis

Freshmen
Ishan Arora
Johnny Jaffe
Management: Preliminary Schedule

• NASA Design Review Process:
 – Conceptual Design Review
 • 15 October 2015
 – Preliminary Design Review
 • TBD November 2015
 – Critical Design Review
 • TBD December 2015

• Team Mission Schedule:
 – All design and CAD work completed
 • 1 January 2016
 – Payload subsystem testing completed
 • 1 March 2016
 – Payload integration and system testing completed (including ground station interaction)
 • 15 April 2016
 – Integration at Wallops
 • June 2016
Management: Monetary Budget

<table>
<thead>
<tr>
<th>Spending</th>
<th>Amount</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earnest Deposit</td>
<td>$2,000.00</td>
<td>Refundable, due: 10/16/15</td>
</tr>
<tr>
<td>Launch Fee Installment 1</td>
<td>$6,000.00</td>
<td>First payment on launch fee, due: 2/17/16</td>
</tr>
<tr>
<td>Launch Fee Installment 2</td>
<td>$6,000.00</td>
<td>Second payment on launch fee, due: 4/6/16</td>
</tr>
<tr>
<td>Housing Estimate (June Travel)</td>
<td>$798.00</td>
<td>7 nights - Apple Tree Apartments, Chincoteague, VA</td>
</tr>
<tr>
<td>Housing Estimate (August Travel)</td>
<td>$798.00</td>
<td>7 nights - Apple Tree Apartments, Chincoteague, VA</td>
</tr>
<tr>
<td>Other Travel Costs</td>
<td>$200.00</td>
<td>Gas and Food</td>
</tr>
<tr>
<td>Payload Components</td>
<td>$2,003.24</td>
<td>See 'Component Breakdown'</td>
</tr>
<tr>
<td>Total</td>
<td>$17,799.24</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Funding</th>
<th>Amount</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.i. solutions</td>
<td>$0.00</td>
<td>Company, previous source</td>
</tr>
<tr>
<td>PPI-TimeZero</td>
<td>$0.00</td>
<td>Company, potential source</td>
</tr>
<tr>
<td>VSGC</td>
<td>$0.00</td>
<td>VA Space Grant Consortium</td>
</tr>
<tr>
<td>AOE Department</td>
<td>$16.77</td>
<td>Account balance</td>
</tr>
<tr>
<td>SEC</td>
<td>$1,196.67</td>
<td>Account balance</td>
</tr>
<tr>
<td>Total</td>
<td>$1,213.44</td>
<td></td>
</tr>
</tbody>
</table>

Current Balance - $16,585.80
Management: Team Contact Matrix

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Day Phone</th>
<th>Cell Phone</th>
<th>Receive Texts?</th>
<th>Email</th>
<th>Citizenship</th>
<th>OK to Add to Mailing List?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team Lead</td>
<td>Sebastian Welsh</td>
<td>same -></td>
<td>610-368-5539</td>
<td>Yes</td>
<td>welshs16@vt.edu</td>
<td>U.S.</td>
<td>Yes</td>
</tr>
<tr>
<td>Team Lead</td>
<td>John Mulvaney</td>
<td>same -></td>
<td>859-443-0409</td>
<td>Yes</td>
<td>johnwm1@vt.edu</td>
<td>U.S.</td>
<td>Yes</td>
</tr>
<tr>
<td>Team Member</td>
<td>Kyle Simmons</td>
<td>same -></td>
<td>215-779-0772</td>
<td>Yes</td>
<td>wskyle12@vt.edu</td>
<td>U.S.</td>
<td>Yes</td>
</tr>
<tr>
<td>Team Member</td>
<td>Alex Dixon</td>
<td>same -></td>
<td>540-327-9017</td>
<td>Yes</td>
<td>xandixon@vt.edu</td>
<td>U.S.</td>
<td>Yes</td>
</tr>
<tr>
<td>Team Member</td>
<td>Ryan Ligon</td>
<td>same -></td>
<td>804-878-2230</td>
<td>Yes</td>
<td>rpl42093@vt.edu</td>
<td>U.S.</td>
<td>Yes</td>
</tr>
<tr>
<td>Team Member</td>
<td>Seth Austin</td>
<td>same -></td>
<td>540-447-4474</td>
<td>Yes</td>
<td>setha07@vt.edu</td>
<td>U.S.</td>
<td>Yes</td>
</tr>
<tr>
<td>Team Member</td>
<td>Ben Gingras</td>
<td>same -></td>
<td>413-575-1085</td>
<td>Yes</td>
<td>gben@vt.edu</td>
<td>U.S.</td>
<td>Yes</td>
</tr>
<tr>
<td>Team Member</td>
<td>Greg Scott</td>
<td>same -></td>
<td>610-357-6624</td>
<td>Yes</td>
<td>flyers08@vt.edu</td>
<td>U.S.</td>
<td>Yes</td>
</tr>
<tr>
<td>Team Member</td>
<td>Johnny Jaffee</td>
<td>same -></td>
<td>203-240-7205</td>
<td>Yes</td>
<td>jjaffee@vt.edu</td>
<td>U.S.</td>
<td>Yes</td>
</tr>
<tr>
<td>Team Member</td>
<td>Tony DeFilippis</td>
<td>same -></td>
<td>520-820-5378</td>
<td>Yes</td>
<td>dtony@vt.edu</td>
<td>U.S.</td>
<td>Yes</td>
</tr>
<tr>
<td>Team Member</td>
<td>Ethan Ohriner</td>
<td>same -></td>
<td>703-343-5688</td>
<td>Yes</td>
<td>ethano95@vt.edu</td>
<td>U.S.</td>
<td>Yes</td>
</tr>
<tr>
<td>Team Member</td>
<td>Genevieve Gural</td>
<td>same -></td>
<td>703-346-3609</td>
<td>Yes</td>
<td>ggural@vt.edu</td>
<td>U.S.</td>
<td>Yes</td>
</tr>
<tr>
<td>Team Member</td>
<td>Ishan Arora</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>ishana97@vt.edu</td>
<td>U.S.</td>
<td>Yes</td>
</tr>
<tr>
<td>Team Member</td>
<td>Emma Manchester</td>
<td>same -></td>
<td>410-937-9696</td>
<td>Yes</td>
<td>emmam95@vt.edu</td>
<td>U.S.</td>
<td>Yes</td>
</tr>
<tr>
<td>Team Member</td>
<td>Sean Roberts</td>
<td>same -></td>
<td>610-470-4495</td>
<td>Yes</td>
<td>seanr13@vt.edu</td>
<td>U.S.</td>
<td>Yes</td>
</tr>
<tr>
<td>Team Member</td>
<td>Ramy Armanous</td>
<td>same -></td>
<td>804-484-0400</td>
<td>Yes</td>
<td>ramya7@vt.edu</td>
<td>U.S.</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Management: Team Availability Matrix

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct 12-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:00 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:00 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 AM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00 PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00 PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:00 PM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:00 PM</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4:00 PM</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5:00 PM</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

PLEASE USE MOUNTAIN TIME ZONE TIMES
Management: Team Mentors

- Dr. Kevin Shinpaugh
- Dr. Jonathan Black
- Zachary Leffke (Space@VT Ground Station manager)
- Orbital ATK mentors (TBD - regular design reviews)
Risks/Worries:

• Sufficient ruggedization of the COTS electronic components to survive launch loads
• Space@VT has leading experts in SDR, so we should have strong advisement through the design, build, and testing processes, as well as from Orbital ATK
Conclusion

• Significant benefit for the SmallSat industry - enables communication over a reliable network while mitigating the concern of interfering with government operations

• Next Steps:
 – Communicate further with Orbital ATK
 – Determine electrical needs
 – Begin CAD model and component layouts